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ESTHETICS AND MATHEMATICS 

By PROFESSOR DAVID EUGENE SMITH 

Teachers College 

General Field.—In considering mathematies in relation to the 

beautiful, the range of possibility is so vast that a brief article 

like this ean hardly be expected even to list the salient points of 

contact. The field might properly include all that we designate 

as the fine arts or, to use the more expressive phrase of the 

French, the beaux arts. Painting, for example, might be consid- 

ered with reference to the works of that great genius in science, 

in mathematies, and in art—Leonardo da Vinci. Sculpture 

might equally well be included because of the mathematical prin- 

ciples employed by that majestic user of ponderous masses, Mi- 

chelangelo. Architecture might have place with reference to the 

works of that Oxford professor of mathematics, Sir Christopher 

Wren, who rebuilt ecclesiastical London; engraving, with refer- 

ence to that gifted artist of Niirnberg, Albrecht Diirer, who 

published the first modern work on curves; music, with refer- 

ence to the fact that it always ranked as a branch of mathe- 

maties until the sixteenth century; decoration, with reference 

to the geometric designs found in all ages and reaching their 

highest degree of perfection in the works of the Moslems; and 

literature, with reference to the mathematics of poetry, and the 

poetry of mathematics. Indeed, we might properly include the 

beauties of nature, where mathematics plays a part of which 

we are usually quite unconscious. 

The subject is so extensive that it is merely possible to suggest 

a few of the special lines to which we may find it of advantage 

to give a little thought as we plan our work from day to day. 

Crude Efforts at Recognition.—The relation of mathematics 

to the fine arts is so evident that there have not been wanting 

those who give it quite adequate recognition in their teaching. 
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Indeed, it is probable that every teacher of geometry calls at- 

tention to some of the esthetic features of the figures studied, 

and numerous authors have done the same. Thus we have 

certain European textbooks which give geometric lace patterns 

in their geometries for girls and geometric design in their geom- 

etries for boys, and make other crude attempts at relating the 

esthetic to the intuitive phase of the subject. In America we 

have had the Gothic window phase, the colored pattern work, 

and other features which often wasted time in demonstrative 

geometry, but which have value if used within reason in the 

preliminary intuitive stage. 

All these efforts are helpful but they are crude, and perhaps 

this crudity must be expected from such attempts. It is quite 

possible that we can hope for little more than a recognition of 

the esthetic in the daily work before our classes, letting the idea 

appear casually as occasion offers. Certainly if we should at- 

tempt to write a textbook that should bring out all the relations 

of mathematics to the fine arts and to the beauties of nature, 

the result would be not only unwieldy but esthetically and edu- 

cationally unsatisfactory. Just so long as learning continues 

to be looked upon as an unpleasant task, just so long must the 

esthetic lose its beauty, especially if too consciously related to 

the daily routine. 

As for the parquetry flooring, the Gothic windows, the Arabic 

decorative work, and the linoleum patterns in our textbooks on 

demonstrative geometry, the less said the better. Except with 

a limited number of enthusiastic teachers, although not in 

general with the most successful in producing mathematical re- 

sults, the effect of their introduction has been rather disap- 

pointing. 

Antiquity of the Subject.—The relation of intuitive geometry 

to design is prehistoric. Every savage who plaits dried reeds 

for a tent cloth makes use of geometric design. Every potter 

on the banks of the Tigris or the Nile, long before the era of 

writing, and still longer before geometry as a science was born, 

used symmetric forms in his designs or drew such forms upon 

the wet clay before baking it in the sun. 

As civilization advanced, axial symmetry in design gave place 

to the Golden Section,—the dividing of a line-segment in ex- 

treme and mean ratio. The ratio of the shorter of the parts 
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to the longer is about 0.618, or roughly %, %, or % 3. The di- 

vision is so pleasing to the eye that it was commonly made the 

basis of Greek design in vases, in sculpture, and in architecture. 

In general, a Greek temple has its width to its length in about 

the ratio 3:5, and this ratio will be found in various other 

features of the building. Such was the Greek taste for agree- 

able form that this ratio was adopted in later times without any 

apparent knowledge of its basis; indeed, there is not the slightest 

direct evidence to show that the Greeks themselves selected the 

division because of their knowledge of the theory involved. Na- 

ture had already chosen it hundreds of thousands of years earlier, 

and had used it in some of her most beautiful forms. 

Phyllotaxis—When we consider the leaves of a tree, or for 

that matter of any vegetable form, we see that the arrangement 

is not one of chance. The form of the leaf will vary, and so 

will its size, but one principle will not vary, namely, that the 

leaves will so arrange themselves about the stem, the stalk, or 

the branch as to give a minimum amount of superposition of 

ohne upon another, and a maximum exposure of each to the life- 

giving sun and rain. Nature discovered this necessity millions 

of years ago. If we accept a familiar theory of the biologist, 

the plant that did not adopt this law soon perished in the strug- 

gle for existence, so that the law became a race habit, as fixed 

a feature of heredity as the protecting bark of the oak or the 

eyes of the human being. 

Seven or eight centuries ago seems to us a long time, but it 

is only as part of to-day in comparison with the remoteness of 

the period when plant habits began to be formed in the ages 

before the human race appeared. It was less than eight cen- 

turies back that Leonardo of Pisa (Leonardo Fibonacci) called 

attention to an interesting series which we may now write as 

1, 1, 2, 3, 5, 8, 18, 21, 34,---, 

in which the sum of any two consecutive terms is equal to the 

term immediately following; that is, if u, is the mth term, then 

Un_y TF Un = Uns: 

The ratio of the consecutive terms, beginning with the first 

pair, are 4, %, %, % “4s 141, 7Y4,°°: and as the series pro- 
ceeds, this ratio approaches the limit 4% (\/5—1), or approxi- 
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mately 0.618. Thus, % < 0.618, 4 > 0.618, % < 0.618, %> 

0.618, and so on, but Un: Un,, > %(V5—1) asn-> ~, 

Now one curious fact is that the division of a line in extreme 

and mean ratio gives us, for the two segments, 4(\/5—1) 

=0.618, and 1—%(V5—1) = %¥—\% V5 = \%(38— v5) 
= 0.382. Therefore the limit of the Fibonacci series gives us 

the law of the Golden Section, the Sectio Aurea or the Divina 

Proportio of the early Latin books of the Renaissance. 

But how is all this connected with the leaves on a tree? We 

are not at all certain; but there are those who affirm that the 

ideal angle for many plant leaves is %4(3 — \V/5)-360°, 137.52°, 

or approximately 137° 31’, and that higher plants tend to make 

use of this angle, that is, of the Golden Section division of 360°, 

in order to secure the greatest amount of light and rain for 

their leaves. 

Furthermore, it seems to be reasonably safe to assert that if 

we take a variety of plants and examine their leaves, applying 

the dividers to the measurement of the distances between the 

ribs, or between their branch points on the stem, or between the 

branch points of the flower stems, we shall find the Golden 

Section more often than one would suspect; that is, such di- 

visions as 1: 2, 2:3, 3:5, and 5:8. If we wish to save ourselves 

the trouble of measurement, we may examine the careful draw- 

ings and the measurements in such books as Pfeiffer’s Der Gol- 

dene Schnitt, where the work has been done with great attention 

to accuracy and where the conclusions seem perfectly reasonable. 

So we see that Nature seems to have discovered something of 

the esthetic and economical features of the law of the Golden 

Section millions of years before Fibonacci gave to the world 

the series °wuich bears his name, and this series was known six 

centuries before the law of phyllotaxis, of leaf arrangement, 

was suggested; but that the eye of the artist had perceived the 

beauty of this division back in the early centuries of civilization. 

Rise of the Golden Section in Art. How came the artist 
to appreciate the beauty of the golden cutting of a line, of the 

measuring of two lines so that their ratio should be 3:5 or 5:8 

in preference to the more primitive 1:1? Nature changes our 

habits slowly. In our childhood we admire a fern leaf for its 

symmetry, for the unit ratio of one half to the other half. It 

is only in mature years that we notice the more refined ratio of 
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lengths of segments of the stalk or the branches, and observe 

the approximate ratio 2:3, 3:5, or 5:8. The race has grown 

in the same way; and it was probably from the observation of 

natural forms, rather than from the Pythagorean use of the 

Golden Section in the construction of the regular pentagon, that 

it came to recognize the beauty of the division of which we have 

been speaking. 

When Pacioli, early in the sixteenth century, wrote upon the 

subject he adopted a name then current and spoke of the Divine 

Ratio, Divina Proportio, and the term has more significance than 

one would believe until he has given considerable thought to 

the subject. 

Spirals. Just as we find, if we seek them, unthought-of 

beauties in elementary geometry, unthought-of connections be- 

tween the simple propositions of the high school and the common 

forms in which Nature delights, so we find in college mathematics 

similar beauties and relationships if only we look for them. 

Consider, for example, the universality of the spiral. We 

speak of Archimedes as the first to study this form, and as to 

scientific study it is probably true that it is due to him or to 

his friend Conon; but ages before Archimedes and Conon lived 

the spiral was a favorite decoration in art; and millions of years 

before man recognized its beauties Nature was making constant 

use of it in her varied forms. It is not merely that the spiral 

is found in eocene tertiary foraminifers, in the polyzoans of 

the Torres Straits, in the glass sponge, in the Nautilus, in sheeps’ 

horns, in erystals of sulphur, or in the nebulas in which we 

see great solar systems or great universes in the making; these 

evidences are interesting, but what is more significant is that 

certain of these forms coincide to a notable degree of accuracy, 

with the logarithmic spiral, while others evidently inspired 

those artists who designed the beautiful curve of the Ionic capital. 

Not only is the spiral one of the great cosmic forms, but it is 

also one of the evidences of a great biologie law and of a great 

esthetic law as well. 

Newton showed that if attraction had varied inversely as the 

cube of the distance instead of the square, the heavenly bodies 

would revolve in logarithmic spirals rushing with increasing 

rapidity out into infinite space. May this not suggest that in 

some way the inverse square is the law of attraction and the 
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inverse cube the law of production? It is so in the genesis of 

solar systems, it is so in the growth of thousands of animal 

and vegetable forms—but is it a universal law? No one knows; 

we can only say that a mathematical law seems here to show it- 

self in life—in the life of worlds, in the life of the world’s 

fauna and flora, and in the life of mankind as well. With what 

beautiful unconsciousness of this possible law did Holmes touch 

upon the sublime fact in his poem on the Nautilus: 

‘*Build thou more stately mansions, O my soul!’’ 

That poet of science, Henri Fabre, has called attention to the 

web in which the Epeira weaves her logarithmic spiral so skill- 

fully that ‘‘one would believe her to be thoroughly versed in 

the laws’’ of the curve itself. He asks, as he watches the spi- 

der’s labors: 

**Now is this logarithmic spiral, with its curious properties, 

merely a conception of the geometers, combining number and 

extent, at will, so as to imagine a tenebrous abyss wherein to 

practice their analytical methods afterwards? Is it a mere 

dream in the night of the intricate, an abstract riddle flung out 

for our understanding to browse upon?’’ 

In reply he proceeds: 
**Let us study, in this connection, the Ammonites, those ven- 

erable relics of what was once the highest expression of living 

things, at the time when the solid land was taking shape from 

the oceanic ooze. Cut and polished lengthwise, the fossil shows a 

magnificent logarithmic spiral, the general pattern of the dwell- 

ing which was a pearl palace, with numerous chambers traversed 

by a siphuncular corridor. 

‘To this day, the last representative of the Cephalopoda with 

partitioned shells, the Nautilus of the Southern Seas, remains 

faithful to the ancient design; it has not improved upon its 

distant predecessors. It has altered the position of the si- 

phuncle, has placed it in the center instead of leaving it on the 

back, but it still whirls its spiral logarithmically as did the 

Ammonites in the earliest ages of the world’s existence.’’ 

He also has these inspiring words relating to the science of 

which the logarithmic curve is only a single feature: 

‘‘Geometry, that is to say, the science of harmony in space, 

presides over everything. We find it in the arrangement of 
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the seales of a fir-cone, as in the arrangement of an Epeira’s 

lime-snare ; we find it in the spiral of a Snail-shell, in the chap- 

let of a Spider’s thread, as in the orbit of a planet; it is every- 

where, as perfect in the world of atoms as in the world of im- 

mensities.’’ 

Has all this anything to do with the esthetic—with the arts 

of man? Does this very question suggest the error that es- 

theties must be confined to the products of the human hand? 

Sir Thomas Browne tells us better, in his Religio Medici, when 

he says, ‘‘ All things are artificial ; for nature is the art of God.’’? 

And Victor Hugo tells us better still when he says: 

‘*Mathematics plays its part in art as well as in science. 

There is algebra in astronomy, and astronomy is akin to poetry ; 

there is algebra in music, and music is also akin to poetry.’’ 

Henri Fabre commented upon these words by adding: 

‘* Algebra, the poem of order, has magnificent flights. I look 

upon its formulas, its strophes, as superb.’”’ 

Music and Mathematics——As already stated, music was a 

branch of mathematics until the sixteenth century. Pythagoras 

in the sixth century B.C., had noticed that musical strings of 

equal length, when stretched by weights in the ratio of 4%: 74: %, 

produced intervals which are an octave, a fifth, and a fourth, 

and thus he was led to inelude music among the four mathe- 

matical disciplines—arithmetic, geometry, astronomy, music. 

When Shakespeare wrote, 

‘*T do present you with a man of mine, 

Cunning in music and the mathematics,’’ 

his words contained no element of surprise, for the union of the 

two was still recognized by long tradition. 

But leaving tradition we might seek for a greater truth in 

Byron’s line that 

‘<There’s music in all things, if men had ears,’’ 

which is so axiomatic that we may say that we shall be found 

wanting if we fail to bring out from our everyday work in mathe- 

matics the music, the rhythm, the uplift of spirit, the harmony 

that is there. When Longfellow wrote, 

1QOn the relation of mathematics to art the student may with profit 

consult Colman, 8., Nature’s Harmonic Unity, New York, 1912; Cook, 

T. A., The Curves of Life, New York, 1914, and various other works of 

the same type. 
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‘“Musie is the universal language of mankind,’’ 

he might have written ‘‘mathematies’ 

perhaps with even greater truth. 

Tradition should not easily be pushed aside. Any attempt 

to discard the experience of the race must be as short lived in 

art and in education as it is in government and in morals. We 

may speak of superstitions in social affairs, in science, in educa- 

tion, in religion, and in the belief that mathematics and musie 

belong together; but superstitions are about as often based on 

truth as on falsehood. Astrology is a superstition, but we are 

not even yet prepared to say, scientifically speaking, that there 

is no truth whatever in any part of its doctrine. Inoculation 

was scoffed at as superstitious for generations before Jenner, 

and for centuries the ‘‘regular’’ physicians condemned as a su- 

perstition the folk-belief that the rat spread the plague. For 

eighteen hundred years the followers of Galen ridiculed the an- 

cient Babylonian superstition that flies carry disease, and yet 

every pupil in school to-day knows it as a scientific fact. 

All of this may seem like a discontinuity, as we say in mathe- 

maties,—a break in our graph representing the relation of mathe- 

matics to music. It is, however, not at all a cut in the line; it is 

merely introduced to show that traditions are not mere supersti- 

tions, and superstitions are not always wrong. The world be- 

lieved in ghosts; then came the theorists in science and the ghost 

was banished; now comes the Psychical Research Society, with 

a worthy following of scientific minds, and the ghost walks once 

more. Music was mathematics; then comes the theorists and 

the relation is severed; now comes modern science and proceeds 

to photograph a sound wave of a violin, and the resulting curve 

is merely such a graph as any pupil in the high school might 

either construct or study. <A college student may even determine 

the equation of the curve, and thus link music to mathematies 

in a way of which Pythagoras never could have dreamed. In- 

deed, in the theory of sound in general, the energy, or the 

intensity, varies as the square of the product of amplitude and 

frequency ; that is 

in place of ‘‘musie,’’ and 

I=kn?* A’, 

2 For graphs and equations illustrating this point see D. C. Miller, 

The Science of Musical Sounds, New York, 1916. 
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or, for purposes of a graph, 

I==@ 4*,* 

If n=1 and A=1, then ] =—1, and we have a wave-shaped 

graph of a certain shape. If n=1 and A= 2, we have ]=4 

and a graph with higher peaks. If n=2 and A=1, we have 

]==4 and the graph has lower peaks, and if n=3.3 and 

A = 0.3, then J==1 and the graph is a mere ripple upon the 

surface of the water. 

Thus we find in these variants of the curve of sines, in these 

pictures of the ‘‘breathings of the sea,’’ a relationship between 

music and mathematics that for centuries formed a kind of 

superstition of the race, but is now a simple mathematical fact. 

A German writer, a philosopher with the heart of a poet,— 

Helmholtz,—speaking of the remarkable relation between these 

two branches of intellectual activity, described them as 

**Mathematies and music, the most sharply contrasted fields 

of scientific activity which can be found, and yet related, sup- 

porting each other, as if to show the secret connection which 

ties together all the activities of our mind.’’ 

Perhaps it was this very expression that led Sylvester to say: 

‘*May not Music be deseribed as the Mathematie of sense, 

Mathematic as Music of the reason? the soul of each is the same! 

Thus the musician feels Mathematic, the mathematician thinks 

Music,—Musie the dream, Mathematic the working life—each to 

receive its consummation from the other when the human in- 

telligence, elevated to its perfect type, shall shine forth glorified 

in some future Mozart-Dirichlet or Beethoven-Gauss—a union 

already not indistinetly fore-shadowed in the genius and labours 

of a Helmholtz!’’* 

Conclusion.—It should be quite unnecessary to say that these 

remarks upon the scientific relation of mathematics to the fine 

arts are not made for the purpose of directly influencing the 

instruction of classes in algebra, in painting, in trigonometry, 

or in piano playing. In fact, the remarks as a whole are in- 

tended to draw us away from the idea that mathematics is a 

science apart, when it should be looked upon as the science which 

8 For an authoritative article on this subject, see R. C. Archibald, 

‘*Mathematicians and Music,’’ American Mathematical Monthly, Vol. 31, 

p. i, 
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binds together all the arts of man. Well did Cicero say, ‘‘ All 

arts which relate to mankind have a certain common bond,’’* 

and whether or not we exaggerate mathematies sufficiently in 

our minds to make it seem to be this binding energy, at any 

rate we do well to be so assured of the relation of this science 

to the esthetic in its varied forms, as to instil into the minds 

of our pupils the consciousness that such a relationship exists. 

If we cannot state as an equation the precise nature of this re- 

lationship, nor give a precise account of the common charac- 

teristics of two disciplines which seem to the unthinking to be 

far apart, let us consider the words of Lord Balfour, the greatest 

philosopher among modern statesmen, when speaking of the two 

great divisions of human emotions: 

**Of highest value in the contemplative division is the feeling 

of beauty; of highest value in the active division is the feeling 

of love. . . . Love is governed by no abstract principles; it obeys 

no universal rules. It knows no objective standard. It is ob- 

stinately recalcitrant to logic. Why should we be impatient be- 

cause we can give no account of the characteristics common to 

all that is beautiful, when we can give no account of the charac- 

teristics common to all that is lovable?’’ 

And why should we who dwell in the domain in which Py- 

thagoras ruled, and in which Archimedes held sway in later 

times—and Descartes, and Fermat, and Leibniz, and Newton— 

why should we be impatient because we can only feel the bonds 

that unite mathematics and esthetics, although we are without 

power to express the law of union? 

4Omnes artes quae ad humanitatem pertinent habent quoddam com- 

mune uinculum. 



FUNCTIONS IN GENERAL, AND THE FUNCTION 
[2] IN PARTICULAR 

By PROFESSOR WALTER B. CARVER 

Cornell University 

One of the earliest notions encountered in mathematics is that 

of afunction. The word is regarded at first as being synonymous 

with the word “expression”’ 
9 x? 

z- | 

number z is given, these expressions indicate operations which 

—a function of z is an expression in z. 

Thus 2?, , Wz, vx — 4 are functions of xz. When the 

can be performed upon the number z to obtain a new number 

which is the value of the expression. For a given expression 

there may be some restrictions upon the values that may be 

given to z if the expression is to have meaning. Thus, for 

oa , ' ; 
ra? can not be given the value 1, because in this case the 

expression would call for a division by zero, and there is no such 

operation in mathematics. And if we are restricted to dealing 

with real numbers (as is the case in many practical applications 

z can not be given negative values in the expression Vr, and only 

values equal to or greater than 4 in the expression yx — 4. In 

all the examples cited, the value of zx being given arbitrarily 

(except for such restrictions as noted) the value of the expression 

can be found exactly, or approximated as a decimal to any re- 

quired number of places, by well-known arithmetical procedures. 

When we consider such expressions as 

vx + 1, sin 22, log (1 + 2), 2, 

the difficulty of finding (exactly or approximately) the value of 

the function for a given value of zx increases, but the idea is not 

essentially different. There must be some arithmetical process 

for approximating sin 2x when z is given—otherwise whence the 

tables of sines? The essential notion of a function of z is that 

when z is given a value the value of the function is fixed. 

One now begins to see that the idea of an expression is not 

essential. A mathematical expression in z is a conventional 

symbolism representing some operation that is to be performed 
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2 with the number x. One writes y = 2?, meaning that the value 

of y will be found by multiplying z by itself, and y is thus a 

function of x. If the notation x? had never been invented, we 

could still say that y is to be found by multiplying z by itself, and 

y would then be a function of x although there would be no ez- 

pression to represent the relationship. If we agree that y is to be 

twice x whenever z is an integer and equal to z for all other 

values of x, then y is a function of z even though we can not 

write that y is equal to any conventional expression in x. All 

about us are such related quantities which we encounter in our 

every-day experience, some of the relationships being expressible 

in conventional mathematical symbols, and others not. To put 

the matter precisely: 

We say that y is a function of z if y and z are so related that 

when z is given any value (arbitrary except for certain specified 

restrictions) ! the value of y is determined. 

When we restrict ourselves to real numbers, the familiar type 

of graphical representation is helpful in the consideration of 

functions. Giving a value to z, we find the corresponding value 

of y, and plot the point having the coordinates (x, y) in a rectan- 

gular Cartesian system. The totality of all the points that could 

be so obtained makes up a graph which is useful in studying the 

functional relationship between y and z. The graph is usually 

a curve in the simpler cases (though it is not necessarily so),” 

and the graphs corresponding to the more familiar relationships 

such as y = 2?, y = vz, and y = sin z are shown in our element- 

ary textbooks. In this connection the equation y = 5 may be 

regarded as expressing y as a function of z if it is understood to 

mean that y has the value 5 for every value of x, and it is only with 

this understanding that we can represent this equation graphically 

by a line parallel to the z axis. ; 
New expressions are being constantly introduced into mathe- 

matics, and many symbols are in use in addition to the more 

familiar ones in our elementary texts. Thus, sgn z (read “signum 

x’’) represents a function which has the value 1 for all positive 

1 Thus if y = <4 , the value of y is determined when z is given any value 

whatever except 1; and similarly, for y = x! (factorial x), x can be given any 

positive integer value. 
? Thus the graph corresponding to y = 2! is a set of isolated points, since 

x! has meaning only for positive integral values of z. 
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values of z, — 1 for all negative values of z, and zero when z is 

zero; while I'(z) (“gamma z’’) is a function closely related to z! 

but defined for all positive values of z. 

A function of considerable interest is denoted by the symbol 

[x], which may be read “bracket z.” It is often roughly de- 

scribed as meaning ‘“‘the greatest integer in z.”’ To be precise, 

y = [x] means that when z is an integer y is equal to z, and when 

x is not an integer y is the greatest integer less than x. Thus for 

r= 42, y= 4; for «= V¥29, y=5; for z= 7, y= 3; for 

z= —3.3,y = —4; and forz = 1 — v7, y = —2. The graph 

of the function consists of disconnected pieces of straight line 

parallel to the x axis. With regard to this graph it must be 

understood that the point corresponding to an integral value of 

x is not at the right hand end of a segment but at the left hand 

end of the next segment above. 

We use this function (though not the expression for it) almost 

daily. A number of pieces of candy are to be distributed evenly 

among five boys, any odd pieces left over being given to the dog. 

If x is the total number of pieces and y the number that the dog 

gets, what is the equation expressing the relation between y and 

z? It is a rather curious thing that our ordinary algebraic 

symbols are not adequate for this purpose. One may readily 

verify that the relation is 
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If x represents the weight of a letter in ounces and y the 

number of cents postage required on it, one might say carelessly 

that the relation is y = 2x; but this is obviously wrong, for if the 

letter weighs 2.5 ounces one does not pay 5 cents postage. The 

correct equation is y = —2[—2z]. If the letter weighs 2 ounces, 

[—2]= —2, and y = (—2)(—2) = 4; while if the letter weighs 

2.5 ounces, [—2.5] = —3, and y = (—2)(—3) = 6. If the 

postmaster has a mean disposition the formula takes the some- 

what simpler (but illegal) form y = 2(1 + [2 ]). 

If you can buy ice-cream only in quart bricks, and one brick 

is enough for 8 people, how many bricks will you need to buy for 

, P x 
x guests? One thinks at once of the expression ls | + 1, and 

this gives the correct number when z is not a multiple of 8 but 

gives an unnecessary extra brick when z is a multiple of 8. The 

correct expression may be seen to be — _ = | 
é 

It should be noted that the function — 1 —[/—-2z] is almost the 

same function as [2]: for values of x other than integers the two 

expressions are equal; but for integer values of z, [z] = x while 

—1-—[-2]=2-1. The graph for y = — 1 — [—72] looks 

just like that for y = [2], the difference being only that for an 

integer value of x the point is at the right-hand end of a segment 

instead of being at the left-hand end of the next segment. 

By using this bracket function in combination with the more 

familiar functions, many interesting and useful relations can be 

expressed. The reader may find it amusing and profitable to 

plot the graphs corresponding to such expressions as 

z-[t] @-[)’, 2«-[4]+@-[)}?. 

e’+2+2 

z+ 2 

x is negative, between 1 and 2 when z is positive, and the value 

| has the value 0 

when z is negative and the value 1 when z is zero or positive. 

The graph coincides with the x axis to the left of the origin, then 

jumps to a point one unit above the origin on the y axis and con- 

tinues to the right as a line parallel to the z axis and one unit above 

it. If we replace x by z — a in this function, a being any fixed 

Since the function has values between 0 and 1 when 

1 when z is zero; it follows that 
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number, the break in the graph will occur at x = a rather than at 

the origin. Thus 

| eS | 

(x — 3)? +7 

has the value 0 when z is less than 5, and the value ! for x equal 

to or greater than 5. Evidently the function 

as (z — a)? + (x — a) +2 

(x —a)?+2 

has the value 1 for z less than a and the value 0 for x equal to or 

greater thana. This enables us to write an equation correspond- 

ing to a graph made up of parts of two different curves. Thus 

me eee eee 
ae (@—1)?+2 

is — 1 4+fe— 1) +255 

(e- if +32 x 

has a graph which consists of the line y = 2 to the left of the point 

Fic. 2 

(1, 1), and of a part of the hyperbola y = to the right of this 

point. 

As a curiosity, the reader may be interested in a parcel post 

formula. If y represents the required postage on a package, x 

the weight of the package in pounds, and z the number of the 

zone,* the formula may be written 

*“TLoeal’’ delivery corresponds to z = 0. 
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. ‘62 —2 Z 4- 
y=ets+((S5*)[2e4/4 4%] 

d Ss 

8 

' 
dismoat -1-|-—15. 

It may be noted that this is not the only formula that correctly 

expresses this relation. The reader may be interested in trying 

to devise a.simpler one. 

Two arguments may be advanced for the introduction of this 

function bracket xz into our teaching of elementary algebra. 

First, its meaning is simple,‘ and it expresses a number relation 

which occurs frequently in our everyday experience and is not 

expressible in our familiar algebraic symbols. Secondly, it 

furnishes a simple example of a discontinuous function. When a 

student begins the study of calculus he is not much impressed by 

a definition of continuity. He has become familiar with a num- 

ber of mathematical expressions all of which represent functions 

which are continuous as long as they remain finite; 7.e., the only 

type of discontinuity familiar to him is that exhibited by — 

atx = 1. If he gets the idea of continuity at all, he is likely to 

get the impression that so long as his functions are bounded he 

need not worry about their continuity. A familiar function, ex- 

pressed by a familiar notation, that needed watching in this re- 

spect would be helpful. 

4The meaning of [7] is at least as simple as that of 2* and 2’, and it is 

certainly much simpler than that of vz or z~?!*, 



a aa 

wees’ 

OBJECTIVES IN TEACHING DEMONSTRATIVE 

GEOMETRY 

By PROFESSOR W. D. REEVE 

Teachers College, Columbia University 

In THe Matuematics TEeacHer for November, 1925 I pub- 

lished an article on ‘‘ Objectives in the Teaching of Mathematics,” 

a large part of which was a list of specific objectives in elementary 

algebra. In the March 1927 issue of the same magazine I pub- 

lished a list of objectives to be attained in teaching intermediate 

algebra. In the preparation of these lists I had the assistance of 

a large number of my students in Teachers College who are 

mature teachers of experience. The objectives therein presented 

have furnished many groups with basic lists of aims which have 

been used in preparing new courses of study in various parts of the 

country. In the last two years I have also prepared, with the 

help of my students a list of objectives to be obtained in the teach- 

ing of demonstrative geometry. As was the case with the other 

two lists, this new group of objectives is not intended to be final, 

but tentative. We are willing to present them to the readers of 

THe MartuHematics TEACHER because we hope that in this way 

they will be discussed and some more definite aims established in 

the teaching of geometry. 

In comparison with the great central objectives to be attained 

in the teaching of demonstrative geometry the specific proposi- 

tions, principles, definitions, or other geometric facts listed here 

and which are usually classified as ‘‘ exercises’’ are of minor 

significance. However, we think with facts, and our list seems 

to us to constitute the mechanical structure around which the 

course in geometry is built and by means of which the funda- 

mental major objectives are realized. 

GENERAL OBJECTIVES 

I. To develop an understanding of 

1. The need for proving statements. 

2. The difference between intuitive and demonstrative 

geometry. 

3. The meaning of 
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. axiom. c. theorem. e. proposition. 

. postulate. d. corollary. f. converse. 

4. Axioms, postulates, and definitions as bases of proof. 

5. The various forms of geometric proof as follows: 

. direct. c. analytic. e. inductive. 

. indirect. d. synthetic. f. deductive. 

6. The various steps in a geometric proof. 

7. Statement and proof of the converse of a theorem. 
8. Analysis of originals. 

9. Geometric construction. 

10. Functional relationship. 

. To acquire habits of, and develop power for: 

1. Logical thinking. 

Reasoning. 

Induction from original problems. 

Critical attitude. 

Correct speed. 

6. Neatness and accuracy in construction. 

> 9° pe 
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. To develop an appreciation of: 

1. “The human worth of rigorous thinking.”’ 

2. The practical value of mathematics in life. 

3. The aesthetic value of mathematics. 

OBJECTIVES IN TEACHING CONGRUENCE 

1. The idea of congruence. 

2. The direct method of proof. 

. To extend the knowledge of axioms to include the relation of 

the whole to its parts. 

. To develop the following abilities: 

1. To use the congruence theorems in establishing valid 

proofs. 

2. To select corresponding parts of congruence figures. 

To pick out overlapping triangles. 

4. To use the congruence theorems to measure in- 

accessible lines. 

5. To use the facts regarding an isosceles triangle in 

establishing proofs. 

a 

: 
q 

5 
* 
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6. To use the facts regarding an equilateral triangle in 

a proof. 

7. To pick out the significant triangles in a figure. 

8. To discover geometric relations in original exercises. 

OBJECTIVES IN TEACHING PARALLEL LINES 

I. To develop an understanding of: 
: 1. Parallel lines. 

2. The postulate of parallels. 
4 3. Transversal. 

4. The kinds of angles made by a transversal. 

. a. Interior. c. Alternate. 

: b. Exterior. d. Corresponding. 

- 5. The five conditions of parallelism. 

‘ 6. The sum of the angles of a triangle. 

7. The relation of an exterior angle of a triangle to the 

two nonadjacent interior angles. 

II. To develop the following abilities: 

1. To draw a line through a given point parallel to a 

given line. 

2. To pick out equal angles. 

3. To pick out angies whose arms are respectively 

parallel in the same or in opposite directions. 

4. To use the following in the proofs of subsequent 

theorems and the solution of original exercises: 

a. The conditions of parallelism. 

b. The fact that the sum of the angles of a triangle 

is equal to 180°. 

c. The relation between an exterior angle of a tri- 

angle and the two nonadjacent interior angles. 

OBJECTIVES IN TEACHING QUADRILATERALS 

I. To establish the following concepts: 

1. Properties of quadrilaterals: 

a. The quadrilateral as a four-sided figure. 

b. The parallelogram as a quadrilateral whose op- 

posite sides are parallel. 

c. The rectangle as an equiangular parallelogram. 

d. The square as an equilateral rectangle. 
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e. The rhombus as an equilateral parallelogram. 

f. The trapezoid as a quadrilateral of which two 

sides are parallel. 

g. The diagonal as joining two non-consecutive 

vertices. 

h. The altitude as the length of the perpendicular 

between the bases. 

2. Distance. 

a. Distance between two points as the length of the 

straight line between them. 

b. Distance from a point to a line as the length of 

the perpendicular dropped from that point to 

the line. 

c. Distance between two parallel lines as the per- 

pendicular distance between them. 

II. To develop and establish the following concepts relating to 

parallelograms: 

1. The side relations of parallelograms. 

a. Opposite sides equal. 

b. Opposite sides parrallel. 

c. Two opposite sides equal and parallel. 

2. Angle relations of parallelograms. 

a. Opposite angles equal. 

b. Any two consecutive angles supplementary. 

3. Diagonal relations. 

a. Diagonals bisect each other. 

b. Diagonals divide parallelograms into two con- 

gruent triangles. 

III. To develop and establish the following concepts relating to 

parallel lines: 

1. Line relations. 

a. Two parallel lines are equally distant from each 

other. 

b. Segments of parallel lines cut off by parallel lines 

are equal. 

c. If three or more parallel lines intercept equal 

segments on one transversal they intercept 

equal segments on every transversal. 

2. Triangle relations. 

a. A line parallel to one side of a triangle bisecting 

another side, bisects the third side. 



TEACHING DEMONSTRATIVE GEOMETRY 439 

b. A line joining the midpoints of two sides of 

triangle, parallel to a third side bisects the 

third side. 

3. Trapezoid relations. 

a. A line parallel to the base of a trapezoid bisecting 

one of the other sides, bisects the opposite 

side, and is equal to half the sum of the bases. 

IV. To develop the ability to analyze originals relating to 

quadrilaterals. 

1. By recognizing equality of line segments. 

. As opposite sides of a parallelogram. 

. As bisected diagonals of a parallelogram. 

. As diagonals of a rectangle or of a square. 

. As segments of parallel lines cut by parallel lines. 

». As line parallel to one side of a triangle or trape- 

zoid which bisects the sides. 

y recognizing parallelism of line segments. 

. As opposite sides of a parallelogram. 

. As a line which joins midpoints of the sides of a 

triangle and of a trapezoid. 

. As segments of parallel lines cut by parallel lines. 

, recognizing equality of angles. 

. As opposite angles of a parallelogram. 

. As angles of a rectangle or of a square. 

OBJECTIVES IN TEACHING POLYGONS 

I. To establish the following concepts relating to properties of 

a polygon: 

. As a rectilinear figure which has three or more sides. 

. Triangle and quadrilateral as polygons with three 

and four sides respectively. 

. Classification of pentagon, hexagon, and octagon. 

. Regular polygons as polygons which are both equi- 

lateral and equiangular. 

5. Diagonals as dividing a polygon into triangles. 

II. To develop and establish the following concepts: 
1. The angle relations of a polygon. 

a. The sum of the interior angles of a polygon of n 

sides is (n — 2) 180°. 
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b. Sum of the angles of a triangle and of a rectangle 

as special cases of a polygon. 

c. Each angle of a regular polygon of n sides 

contains 

—9 
( =) 180°. 

7 

d. The sum of the exterior angles of a polygon is 

360°. 

III. To develop the ability to analyze originals concerning 

polygons. 

1. By recognizing the angle relations. 
a. Sums of angles as depending upon the number of 

triangles in polygons formed by drawing di- 

agonals from a vertex. 

b. Sums of angles of a polygon depending upon the 

number of sides of a polygon. 

c. Sums of angles of a polygon as depending upon 

the sum of the angles in a triangle. 

OBJECTIVES IN TEACHING GEOMETRIC CONSTRUCTIONS 

I. To develop an understanding of: 

1. The significance of constructing versus the mere 

drawing of figures. 

2. The development of a synthetic proof by using the 

analytic method. 

3. The terms bisect, trisect, radius, diameter. 

4. How to discuss impossible cases of a construction 

and cases with two solutions. 

5. How to check constructions by measuring and by 

paper folding. 

II. To develop the ability to: 

1. Draw an arc. 

2. Lay off on a line a segment equal to a given line 

segment. 

3. Bisect any angle in any position alone or when it is a 

part of a figure. 

Bisect a line segment. 

5. Divide a given line into any number of equal seg- 

ments. 

> 

Benes. 
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6. Construct a perpendicular—two general cases for 

position of the point, when line is in any position 

and when it is a part of a figure. 

7. Inscribe a hexagon, a triangle, or a square in a 

circle. ‘ 

8. Construct an angle equal to a given angle. 

9. To construct a triangle—three cases. 

10. Construct a line parallel to a given line. 

III. To develop an appreciation of: 

1. Practical application of these constructions, in- 

cluding every day uses. 

2. Constructions in the realm of the beautiful. 

OBJECTIVES IN TEACHING INEQUALITIES 

To realize the following objectives: 

1. To know the axioms of inequalities. 

2. To realize that certain axioms of inequalities are 

true only for positive quantities. 

3. To develop the ability to use the axioms of inequali- 

ties in proofs. 

. To develop the ability to prove the following propo- 

sitions :— 

a. If two sides of a triangle are unequal, the angles 

opposite these sides are unequal, and the angle 

opposite the greater side is the greater. 

b. If two angles of a triangle are unequal, the sides 

opposite these angles are unequal, and the side 

opposite the greater angle is the greater. 

. To accept the following theorems as postulates: 

a. If two sides of one triangle are equal respectively 

to two sides of another triangle, but the in- 

cluded angle of the first is greater than the 

included angle of the second, then the third 

side of the first is greater than the third side of 

the second. 

b. If two sides of one triangle are equal respectively 

to two sides of another triangle, but the third 

side of the first is greater than the third side of 

the second, then the angle opposite the third 

side of the first is greater than the angle op- 

posite the third side of the second. 
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6. To develop the ability to use the propositions stated 

above in original exercises. 

7. To develop further the ability to use an indirect 

proof. 
8. To develop further the ability to recognize the con- 

verse of a proposition. 

OBJECTIVES IN TEACHING CIRCLES 

I. To develop an understanding of the following concepts: 

1. Central angle. 7. Locus (including the nature 

2. Chord. of a proof). 

3. Are. 8. Incenter. 

a. Major. 9. Cireumcenter. 

b. Minor 10. Orthocenter. 

4. Tangent. 11. Centroid. 

5. Inscribed Angle. Postulates. 

6. Secant. a. Those relating to circles. 

b. Those relating to loci. 

II. To develop the ability to understand and to apply the follow- 
ing: 

1. Through any three points lying in a straight line one 

circle, and only one, can be drawn. (This 

should be postulated.) 

. Equal chords of the same circle or of equal circles 

are equidistant from the center and conversely. 

3. If the diameter is perpendicular to a chord, it bisects 

the chord and its two arcs. 

. An inscribed angle is measured by half its inter- 

cepted arc. 

. The locus of a point equidistant from two points is 

the perpendicular bisector of the line segment 

joining them. 

. The locus of a point equidistant from two inter- 

secting lines is the pair of lines which bisects 

the angles formed by the given lines. 

III. To understand the content of and be able to apply in the 

solution of originals the following: 

1. Relations between central angles and their ares, in 

the same or equal circles. 
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2. An angle formed by two intersecting chords of a 

circle is measured by half the sum of the inter- 

cepted arcs. 

. An angle formed by two secants of a circle, or by 

two tangents or by a secant and a tangent, 

intersecting at a point outside the circle, is 

measured by half the difference between the 

intercepted arcs. 

. An angle formed by a tangent and a chord of a 

circle is measured by half the intercepted 

are. 

5. Angles inscribed in the same segment, or in equal 

segments of a circle are equal. 

). An angle inscribed in a semi-circle is a right angle. 

telations between chords and their arcs, in the same 

or in equal circles. 

3. If a diameter bisects a chord, which is itself a dia- 

meter, it is perpendicular to the chord. 

. If a line is perpendicular to a radius at the end 

lying on the circle the line is tangent to the 

circle. 

. If a line is tangent to a circle it is perpendicular to 

the radius drawn to the point of contact. 

. If tangents to a circle from an external point are 

drawn they make equal angles with the line 

joining the given point to the center and their 

segments from the given point to the points of 

contact are equal. 

. Relation between lengths of chords and their dis- 

tances from the center. 

. Relation between arcs of a circle cut off by parallel 

lines. 

. In the same circle, or in equal circles, two central 

angles are proportional to their intercepted 

arcs. 

. The perpendicular bisectors of the sides of a triangle 

meet in a point. 

. The bisectors of the angles of a triangle meet in a 

point. 

. The altitudes of a triangle meet in a point. 
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18. The medians of a triangle intersect in a point which 

is two thirds of the distance from any vertex 

to the midpoint of the opposite side. 

IV. To develop the ability to construct accurately the following 

and to perform other constructions based on 

these problems: 

1. To circumscribe a circle about a given triangle. 

2. To inscribe a circle in a given triangle. 

3. To draw a tangent to a circle through a given point 

on the circle. 

4. To draw a tangent to a circle through a given ex- 

ternal point. 

OBJECTIVES IN TEACHING PROPORTION AND SIMILARITY 

I. To develop an understanding of: 

1. The laws of proportion applied to lengths, areas and 

volumes. 

ac 
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2. Vocabulary used in connection with proportional 

line segments. 

. Internally and externally proportional. 

. Mean proportional. 

. Third proportional. 

. Fourth proportional. 
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3. 

II. To use 

Similarity. 
a. The use of equal ratios in proving two figures 

similar. 

. The use of parallel lines in obtaining ratios be- 

tween line segments. 

+. The conditions necessary to make two triangles 

similar and also two polygons having more than 

three sides similar. 

. The difference between similarity, equality in 

area, and congruence; and the symbolism re- 

lating to these terms. 

. The use of similar figures to obtain equal ratios 

between line segments and to prove two 

angles equal. 

. The proportions formed by intersecting chords 

of a circle, the tangent and secant to a circle, 

the bisector of the angle of a triangle, and the 

perpendicular from the vertex of the right 

angle of a right triangle to the hypotenuse. 

the following propositions, either as theorems or as 

original exercises: 

. If through two sides of a triangle a line is drawn 

parallel to the third side, it divides the two 

sides proportionally. 

. Three or more parallel lines cut off proportional line 

segments on any two intersecting transversals. 

. If a line cuts two sides of a triangle so that the 

corresponding segments are proportional the 

line is parallel to the third side. 

. Two mutually equiangular triangles are similar. 

. If two triangles have an angle of one equal to a 

corresponding angle of the other and the in- 

cluding sides proportional, the triangles are 

similar. 

. If two triangles have their sides respectively propor- 

tional, they are similar. 

. The perpendicular from the vertex of the right 

angle of a right triangle divides the triangle 

into two triangles which are similar to each 

other and to the given triangle. 
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8. The square of the hypotenuse of a right triangle is 

equal to the sum of the squares of the other 

two sides. 

9. If two chords of a circle intersect, the product of the 

segments of either one is equal to the product of 

the segments of the other. 

10. The perimeters of two similar polygons vary directly 

as any two corresponding sides. 

11. If two polygons are similar, they can be separated 

into the same number of triangles similar to 

each other and similarly placed. 

12. The bisector of an angle of a triangle divides the 
opposite side into segments proportional to the 

adjacent sides. 

13. If two polygons are composed of the same number 

of triangles similar each to each and similarly 
placed the polygons are similar. 

14. If from a point outside a circle a secant and a tan- 

gent are drawn, the tangent is the mean 

proportional between the secant and itsexternal 

segment. 

III. To learn how to make the following constructions: 

1. Divide a given line segment into parts proportional 

to any number of given segments. 

2. Construct the mean proportional between two given 
line segments. 

3. Construct the fourth proportional to three given 

line segments. 

4. Upon a given line segment corresponding to a given 

side of a given polygon construct a polygon 

similar to the given polygon. 

OBJECTIVES IN TEACHING AREAS OF POLYGONS 

I. To understand the meaning of unit of area and equivalent 

figures. 

II. To develop the following abilities: 

1. To find the area of a rectangle. 

To find the area of a parallelogram. 

To find the area of a triangle. 

To find the area of a trapezoid. 

99 bo 
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yu 
- ~ To find the area of an irregular polygon. 

To prove that the area of a parallelogram is equal to 

the product of its base by its altitude. 

7. To prove that the area of a trapezoid is equal to one- 

half the product of the altitude by the sum of 

the bases. 

8. To compare the areas of two triangles, or of two 

rectangles or of two parallelograms, having 

equal bases and equal altitudes. 

9. To compare the areas of two triangles, if they have 

equal bases but different altitudes, and so for 

other polygons. 

10. To find the ratio of the areas of two similar triangles. 

11. To prove that the areas of two similar triangles are 

to each other as the squares on any two cor- 

o> 

responding sides. 

12. To find the ratio of the areas of two similar polygons. 

13. To prove that the areas of two similar polygons are 

to each other as the squares on any two cor- 

responding sides. 

14. To construct a square equivalent to two given 

squares. 

15. To transform a polygon into an equivalent triangle. 

16. To prove geometrically that (a + b)? = a? + 2ab 

+ 0b. 

17. To prove geometrically that (a — b)? = a? — 2ab 

+ b*. 

18. To prove geometrically that (a + b)(a — b) = @ 
= 

OBJECTIVES IN TEACHING THE REGULAR POLYGONS AND THE 

CIRCLE 

I. To develop an understanding of the following terms: 

1. Center of a polygon. 

Radius of a polygon. 

Apothem of a polygon. 

Inscribed and circumscribed polygons. 

Sector of circle. 

Area of circle. 

Circumference as the length of the circle. 

oo 
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448 THE MATHEMATICS TEACHER 

II. To develop the ability to construct the necessary figure and 

to prove or to show that the figure is the cor- 

rect one in the following cases: 

To circumscribe a circle about a regular polygon. 

To inscribe a circle within a regular polygon. 

An inscribed equilateral polygon is regular. 

A circumscribed equiangular polygon is regular. 

The chords of equal ares form a regular inscribed 

polygon. 

Tangents at the midpoints of equal arcs of a circle 

form a regular circumscribed polygon. 

7. Tangents to a circle at the vertices of the inscribed 

polygon form a regular circumscribed polygon 

of same number of sides. 

8. To construct a regular polygon of twice the number 

of sides of a given regular polygon. 

9. To inscribe the following figures in a given circle: 

(a) square, (b) polygons of 2n sides, (c) hexagon, 

(d) equilateral triangle. 

PP Pp Er 
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III. To develop the ability: 
1. To prove that the area of a regular polygon is equal 

to half the product of its apothem by its peri- 

meter. 

2. To recognize that the ratio of C to d in a circle is 

equal to 3.14159---. 

3. To recognize that the circumference of the circle is 

the limit of the perimeter of the inscribed 

regular polygon and circumscribed regular 

polygon. 

4. To recognize that the area of a circle is equal to 

C - $r. 

IV. To develop the ability to use the truths learned in the solu- 

tion and construction of exercises, more espe- 

cially concerning: 

1. The area of a circle and a polygon. 

2. The area of a sector. 

3. The finding of any part of a circle with any one part 

given. 

4. The fact that areas of circles vary as the square of 

d or r. 
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5. The appreciation of the use of polygons and circles 

in art, design, and architecture. 

V. Possible topics: 

Golden section, decagon, pentagon. 

OBJECTIVES IN TEACHING “‘LINES AND PLANES IN SPACE” 

To develop the following abilities: 

1. To recognize the limits of the field of plane geometry 

and to desire to extend this knowledge into 

three-dimensional space. 

2. To develop constructive and spatial imagination. 

3. To represent three-dimensional figures. 

To understand the properties of a plane in space. 

To learn of the relations of points, lines and planes. 

. To extend the concept of “angle” to include 

“dihedral angle.” 

To use in the solving of original exercises the 

theorems concerning the following subjects: 

The intersection of two planes. 

A perpendicular to intersecting lines. 

The perpendiculars to a line. 

A perpendicular at a point in a plane. 

A perpendicular from a point to a plane. 

A perpendicular and obliques. 

Two perpendiculars to a plane. 

A plane through one of two parallel lines. 

Planes perpendicular to a line. 

Parallel planes cut by a third plane. 

Angles with parallel arms. 

A perpendicular to the intersection of planes. 

A plane through a perpendicular. 

. The intersection of perpendicular planes. 

o. A perpendicular to two skew lines. 

ot 
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OBJECTIVES IN TEACHING Metric SoLtip GEOMETRY 

I. To develop the formulas for finding the areas of a: 

1. Prism. 

2. Regular pyramid. 

3. Frustum of a regular pyramid. 

4. Curved surface of a circular cylinder. 
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5. Curved surface of a cone of revolution. 

6. Curved surface of a frustum of a cone of revolution. 

II. To develop an understanding: 

1. Of sections of a prism made by parallel planes. 

2. That an oblique prism is equivalent to a right prism 

under certain conditions. 

3. That sections of two pyramids are equivalent under 

certain conditions. 

4. That triangular pyramids are equivalent under 

certain conditions. 

5. That the number of edges of a polyhedron is two 

less than the sum of the number of vertices 

and the number of faces. 

6. Of the formula for the area of a sphere. 

III. To develop the formulas for finding the volume of a: 

1. Rectangular perallelopiped. 

2. Any parallelopiped. 

3. Triangular prism. 

4. Any prism. 

5. Triangular pyramid. 
6. Any pyramid. 

7. Cireular cylinder. 

8. Circular cone. 

9. Sphere. 

IV. To develop the ability to compute the areas and volumes of 

the geometric magnitudes mentioned above, 

t.e., to develop ability to use the derived 

formulas. 



OBJECTIVES IN INTERMEDIATE ALGEBRA 

By JOSEPH A. NYBERG 

Hyde Park High School, Chicago, Illinois 

In the Matuematics Treacner for March, 1927, Professor 

Reeve has presented an interesting and useful list of the ob- 

jectives in intermediate algebra. Every teacher will find in the 

list the particular items that the teacher believes should be in- 

cluded. When a list is as comprehensive as this one, certain 

practical questions arise: Can all the objectives be reached? 

Which objectives can be slighted if necessary, and which are 

most important? Since Professor Reeve suggests that the list 

serve as a basis for discussion, I present one answer to these 

questions, an answer based on ten years’ experience with about 

500 pupils in classes averaging 37 each. 

I assume that the “intermediate” algebra is the pupil’s third 

semester of algebra, not the fourth, as it would be if the last half 

of the eighth grade is devoted to algebra. Also, I assume that 

this work comes after a year’s work in geometry has intervened 

so that the pupil has not retained all his previous algebraic 

technique. Semesters vary in length. Ours is twenty wecks, 

but I allow only 89 days because holidays may take five days or 

more and some other days are set aside for final examinations. 

Hence the following outline is in the form of 89 lessons in algebra, 

each lesson covering one day’s work. 

1. A rapid survey of the opening chapter in the text. This 

chapter is always a summary of the fundamental rules and 

operations. We discuss the evaluation of algebraic expressions, 

rules of signs, removal and insertion of parentheses, multiplica 

tion and division of polynomials. 

2. The axioms used in solving linear equations with integral 

and fractional coefficients. Discussion of transposition, “ clear- 

ing of fractions,”’ and various typical errors. 

3. Drill on linear equations. 

4. Solution of problems leading to linear equations. 

5. Solution of problems continued. Lessons 4 and 5 include 

at least one problem of each of the standard types: rate of travel, 

29 
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rate of working for two men, mixtures, levers, income on in- 

vestments, etc. 

6. Formulas. Definition, derivation, use, etc. 

Special Products and Factoring 

7. Multiplication of binomials, and factoring ax? + br + c. 

8. Factoring the difference of two squares, and quantities that 

-an be written as the difference of two squares. 

9. Prime Factors. Factoring by grouping. 

10. The Factor theorem. 

11. Review and drill on a miscellaneous list of quantities. 

12. Solution of equations by factoring. 

Fractions 

13. The fundamental principle in reducing fractions. The 

laws for changing signs in the numerator, denominator, etc. 

14. Multiplication and division of fractions. 

15. Addition of fractions. 

16. Complex fractions. 

17. Review and drill on miscellaneous questions on fractions. 

Fractional and Literal Equations 

18. Selection of the proper multiplier or denominator after 

actorin g the denominators. 

19. Equations containing decimals. Finding answer to a cer- 

tain number of decimals. 

20. Literal Equations. The difference between az = b, 

a+2z2=b,a+kzr = bandar+ br=c. 

21. The meaning and solution of a “literal” equation, and 

problems containing “‘literal’’ numbers. 

22, 23. Continuation of lesson 21. Further work on formulas. 

Graphs 

24. Review of elementary work on graphs. Since many pupils 

even to-day have never done any work on graphs even in the 

ninth grade, the subject must be presented thoroughly. 

25. The functional notation, and graphs of functions. 

26. Direct and inverse variation of variables. 
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Sets of Linear Equations 

27. Review of the graphic solution of two linear equations. 

The graphic significance of dependent, independent, and incon- 

sistent equations. 

28. Review of the multiplication-addition and the substitution 

methods. 

29. Continuation of lesson 28, with emphasis on literal equa- 

tions. 

30. Solution of a set of 3 linear equations, with problems. 

31. Continuation of lesson 30. 

32. Review and general drill. expressing one variable in terms 

another when several equations are given. —_ ( 

Radicals 

33. Review of Fundamental Laws. Typical errors to be 

avoided. 
34. Reduction and changes in the radicand. 

35, 36. Addition, multiplication, and division. 

37. Geometrical problems involving radicals. 

Exponents 

38. Review of Fundamental Laws. Meaning of Zero and 

Negative exponents. 

39. Meaning of Fractional exponents. 

40. Drill on multiplication, division, ete. 

41. Equations in which z has a fractional exponent. Miscel- 

laneous problems on exponents. 

Logarithms 

42. Definitions. Graph of x = 10”. 

43. Rules for finding the characteristic. Use of tables for 

finding the mantissa. 

44. Interpolation in finding logarithms. 

45. Interpolation in finding anti-logarithms. 

46. Use of logarithms in multiplication. 

47. Use of logarithms in division. 

48. Use of logarithms to find powers and roots. 

49. Drill on computations. 

50. Use of logarithms in connection with various formulas, 

such as the area of a triangle in terms of its sides, ete. 

51. Miscellaneous drill and review. 
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During the remainder of the semester several problems in 

computations are assigned each week so that the pupil may ac- 

quire facility and accuracy. This is a technique that is acquired 

only slowly. 
Imaginaries 

52. Definitions. Addition. Use of the symbol 7. 

53. Multiplication and division of complex numbers. 

Quadratic Equations 

54, 55. Review of the method of completing the square. Drill. 

56. Problems leading to quadratic equations. 

57. Literal quadratics. Derivation of the formula. 

58. Study of the sum and product of the roots so that this 

method may be used to check solutions. 

59, 60. Problems and equations solved by the formula. 

61. Equations that can be reduced to the quadratic type. 

Theory and Graphs of Quadratics 

62. Character of the roots determined by the discriminant. 

63. Graphs of y = az? + br + c. 

64. Graphs of the fundamental types, as y = 2°; 227+ 7 = P°; 

2—y= a’. 

Seis Involving Quadratic Equations 

65. Solution of one linear and one quadratic equation. 

66. Derivation of a linear equation when a linear equation is 

not given. 

67, 68. Problems leading to sets of equations. 

69, 70. Graphic solutions; their meaning and use. 

71. General review of quadratics. 

Radical Equations 

72. General method of solving by squaring both members. 

Extraneous roots. 

73. Drill on equations. 
74, 75. General review on all types of equations and sets of 

equations that have been considered in the course. 

Progressions 

76. Definitions of arithmetic and geometric progressions. 

Finding d or r. 
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77. Arithmetic means, and the formula for the nth term in an 

78. Formula for the sum of n terms of an A. P. 

79. Problems dealing with arithmetic progressions. 

80. Geometric means, and the formula for the nth term in a G. 

F. 

81. Problems dealing with geometric progressions. 

82. Formula for the sum of n terms of a G. P. 

83, 84. Infinite geometric progressions; formula for the limit 

which such a progression approaches. 

85. Review of both kinds of progressions. 

Binomial Theorem 

86. Statement of the theorem, and practise in writing the first 

five or six terms of such expressions as (a + 26)". 

87. Applications to compound interest, and the computation 

of 1.06 to three or four decimals. : 

88. Derivation of the first 4 terms of (a + b)'” and (a + b)"8 

and the use of the resulting formulas to compute square roots and 

cube roots. 

89. What mathematical induction is. 

Before we lament the omission from this outline of many of 

the objectives in Professor Reeve’s list we should note that the 

latter was prepared “ with the help of a large number of Teachers 

College students who are experienced teachers of mathematics.”’ 

This explains why his list is such a complete one; doubtless each 

teacher who read the list added a few favorite topics, and I shall 

add another one shortly. My outline, on the other hand, was 

prepared in a different way. During the teaching of 13 classes 

in the subject I recorded each day what was accomplished in that 
day’s work. My records show, for example, whether 15 minutes 

or 20 minutes were needed in class to discuss how the character- 

istic of a logarithm is determined; the records show how_many 

minutes were needed to discuss why z®= 1, and how many 

different types of factoring were reviewed in a period of 40 min- 

utes. To make sure that the class was not traveling too fast or 

too slow a 20-minute test was given once a week. Pupils who 

failed in the test were required to repeat the test (after a suitable 

interval for further study) as often as necessary until a satisfac- 

tory grade was reached. By noting the most frequent errors I 
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could decide whether more or less time was needed for certain 

topics. The homework assigned each day was supposed to be 

sufficient to keep the pupil busy for 60 minutes. Every teacher 

knows what a great mistake it is to assign more work than can be 

discussed and corrected. Under ideal conditions the teacher 

would examine, correct, and return to the pupil every piece of 

work that the pupil does. Since this is impossible, time must be 

taken in class to discuss the errors so that the pupil will not 

continue making the same mistakes repeatedly. This discussion 

and presentation of problems in class restricts the number of 

topics that can be studied. 

One objective which I believe ought to be included in this list 

and in the list of objectives for every high school subject is: 

Ability to read a set of printed explanations; ability to study 

printed directions until they can be understood without oral 

guidance from a teacher. 
In simple language this means that the pupil should learn to 

get along without a teacher. If the teacher, standing before the 

class, explains how to solve a certain type of problem and then re- 

quires the pupil to solve ten similar problems, the pupil is ac- 

quiring only a collection of mathematical facts. Even when the 
teacher explains a mode of attack for problems in general, the 

pupil is learning just that much and little else. I believe that 

even intermediate algebra, just as much as beginning algebra or 

history or physics, should be used to teach the pupil how to study 

how to work, how to attack a disagreeable task. The pupil 

should be assigned certain paragraphs in the book, taught how to 

study that topic until he has found its important items, can close 

the book, stand before the class, and tell what he has learned. 

This mode of treatment takes considerable time. Much time 

can be saved by having the teacher talk instead of letting the 

pupil talk. But if the only object is to save time why not have 

the teacher solve the problems in the book. If the teacher talks 
less and the pupils talk more, we shall need to eliminate still more 

of the objectives. 

Frequently when listening to an eloquent speaker or when read- 

ing some article in the mathematical journals I have felt that 

certain other topics should be included in my outline, and I would 

reexamine my records. I allow, for example, five lessons (num- 

bers 33 to 37) for Radicals. Can I reduce it to four? Or, can I 
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reduce the time on Sets of Linear Equations from six lessons to 

five? When discussing such questions with other teachers I 

find that they invariably answer “Why not?’”’ Then when I 

produce my records and ask ‘Which of these assignments shall 

1 omit?’’ the answer is also invariably “‘ Well, I guess you have 

already cut the time to the minimum.” Until I find new ways 
of teaching I cannot include more topics. 

I have not found time to teach the following topics (I mention 

them in the order in which they occur in the list of objectives): 
Synthetic division. 

Variation (except in so far as I can cover in a single period the 

difference between direct and inverse variation). 

Determinants. 

Write an equation that shall have given roots. 

To know that imaginary roots always enter in pairs. 

To recognize from its graph the general characteristics of a 
cubic equation in one variable. 

To find the kth term of the expansion of a binomial. (There 

is a formula for the kth term; but if I wish to practise with 

formulas, I would prefer a more useful one such as finding the 

area of a triangle in terms of its sides). 

The simplifications of the radicals in item 12 on page 157 

should, I believe, all be done by writing the quantities with 

fractional exponents. 

To change the index of a radical. (There is no noed for this 

when fractional exponents are used). 

To find the square root of such expressions as ¥13 — 3 V7. 

To find the square root of a polynomial. 

To find the square root of a number to two decimal places. 

(There is no need for this after the pupil has learned logarithms. 

And for training in technique there are other and better topics.) 

To discover by means of a table of the powers of 2 how to solve 

such exercises as 16 & 64, 2048 + 32. 

To make tables of the powers of other numbers than 2, and to 
solve problems by using these tables. 

To apply logarithms in the work in trigonometry. 

To use logarithms in solving simple exponential equations. 

To interpret the graph of an imaginary number like ¥— 1, 

To graph complex numbers. (This topic is less important than 

many others. Also, the word “graph” is decidedly misleading 
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when used with complex numbers. The pupil does not prepare a 

table showing the corresponding values of two variables when he 

draws the graph of 2 + 37.) 

No required assignments are made on the history of algebra. 

This is optional reading. When the day’s program is upset in 

some unusual way (the football team having defeated its bitter 

enemy) pupils talk briefly on this optional work. 

One objection frequently made against intermediate algebra is 

that it is hardly more than a repetition or review of the ninth grade 

algebra with perhaps some more difficult problems of the same 

type. I have tried to avoid this objection (and Professor Reeve’s 

list of objectives certainly avoids it) by devoting at least two 

thirds of the time to the really new topics. I have, in fact, been 

guided by two assumptions: 

1. More than half of the pupils who take intermediate algebra 

will.continue with the study of mathematics for some time. If 

they take the next semester’s work, which at Hyde Park is 

trigonometry, they must have facility with logarithms, complex 

fractions, radicals, and literal equations. If the pupils go to 

college and take any required mathematics, these topics are 

again the ones in which skill is required. 

2. The topics suitable for the pupils in the preceding group are 

just as suitable as any other topics for the pupils who do not 

expect to continue in mathematics but are taking intermediate 
algebra for some other reason. No one has yet proved that there 

is any more disciplinary value in one topic than in another. 

It would be a great service to all if other teachers would discuss 

how many of the objectives in Professor Reeve’s list can be at- 

tained in a definite amount of time. 



MATHESIS 

By ELLA BROWNELL, 

The Nishuane School, Montclair, New Jersey 

SCENE 

The scene is an underground studio or workshop. Ineense 

is burning in a large black kettle hanging from a black tripod 

at front of stage. A red electric bulb under the kettle is sur- 

rounded by sticks of kindling wood. Two large portable black- 

boards are placed one at each side of front stage. Small table 

with white paper spread ornamented with black paper figures 

(cirele, trapezoid, triangle, etc.) is concealed behind left black- 

board. On the table are the following articles: cardboard cyl- 

inder, three ice cream cones filled with sand and having same 

base and height as cylinder. Two eighteen-inch boxes at right 

front stage covered with white paper and ornamented with black 

circles to imitate dice. 

CHARACTERS 

The boys wear black or dark trousers and white blouses; the 

girls, black skirts and white middies. Each pupil having a 

speaking part has large white card hung with black ribbon about 

the neck. On the card is drawn the proper symbol in large 

black type—i.e. Simple Interest has the percent sign (%) on 

his eard. Plane Geometry (II), ete. Characters to be written 

on cards are in parentheses. 

(Witch—Black dress and cape, tall pointed black hat, long hair 

made from unbraided rope and carries broom with long black 

handle. 

Mr. Decimal Point (.)—black bow, white arrow. 

Simple Interest (%). 

Cutey Angle (V)—Black cap with long white plume. 

Two Cone People—Carry ice cream cones filled with white 

cotton streaked with red ink. 

Plane Geometry (I1)—Carries white hoop with black string 

tied across for diameter. 
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Isoseeles Triangle (A)—Carries large white protractor. 

Mr. L. W. H. (v=lwh)—Carries white measuring stick. 

Miss Numerator—Denominator (5/8). 

Miss Elementary Algebra (2z?y*z). 

Small Number (3). 

Large Number (984,762,351). 

Zero (0). 

Infinity (0). 

As many more as stage will accommodate in order to have a 

erowd of interested lookers-on. 

THE PLAY 

Music.—Enter Witch, who advances slowly toward kettle 

and stirs contents with large black spoon while Decimal Point 

sneaks up from rear of stage imitating motions of witch. Musie 

ceases. 

Witch (much astonished): My little man, what are you doing 

down here in this cave of the underworld? How dare you come 

here? 

Mr. Decimal Point: O witch, my name is Decimal Point and 

I’m not afraid of anything. I go everywhere. I craw! into all 

sorts of places whether I’m welcome or not. With my bow and 

arrow I ean shoot anything I meet. You see I’ve been out hunt- 

ing with my friends and when we discovered this cave they 

wished me to enter and inquire what you are doing and to 

whom this cave belongs. 

Witch: This is the eave of AXolus, the king of the winds, and 

this is the isle of ASolia where A®olus and his six sons and six 

daughters live, keeping eternal carousal. 

I, boy, am Hecate, a mysterious divinity. J represent the dark- 

ness and terrors of night. J haunt the crossroads and grave- 

yards. J am the Goddess of Sorcery and Witchcraft. J am 

seen only by the dogs whose barking tells of my approach. 

Mr. Decimal Point (stealing up to the kettle) : May J ask what 

you are boiling in that kettle? 

Witch: Tut, tut, my boy, J am boiling up answers. 

Mr. Decimal Point: Boiling up answers, answers to what, 

pray tell. 

1 Kolling, Carl, Op. 147, No. 3. Flying Leaves. Century Music Co. 

231-235 W. 40th St., New York City. 
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Witch: The king of the winds has two henchman, Boreas, the 

North Wind who blows directly north from our isle for 300 

leagues until he reaches the City of Ignorance, and Eurus who 

blows directly east for 400 leagues until he reaches the City of 

Inaeceuracy. King Aolus has commanded me to boil out the 

number of leagues that a third wind must blow in whirling 

eross country from the City of Ignorance to the City of Inae- 

curacy. 
Mr. Decimal Point: O, witch, that’s easy. Do you mind if 

I write on this wall? (Looks at blackboard at left where odd- 

shaped white marks have been made.) But what are all these 

marks? 

Witch: Those are records of my evil deeds—all the crimes I 

have committed this week. 

Mr. Decimal Point: Sorry to upset your bookkeeping, but let 

me show you how to find the number of leagues for the third 

wind. (Advanees to board at left stage, erases it and illustrates 

his talk by the use of a large right triangle.) This is 300 leagues 

to the north and this the City of Ignorance, then 400 leagues 

to the east and here is the City of Inaecuracy. Now the square 

of 300 is 90,000; the square of 400 is 160,000. The sum of 

the two squares is 250,000 and the square root of 250,000 is 500. 

Now the third wind must blow 500 leagues according to the 

teachings of dear old Pythagoras. ’ 

Witch: And who is the god Pythagoras? 

Mr. Decimal Point (with disgust): Pythagoras is not a god. 

He lived on the isle of Samos and he has taught us that in any 

right triangle the square of the hypotenuse is equal to the sum 

of the squares of the legs. Now, witch let me call in my friends 

who are waiting outside the cave, they can tell you a great many 

more interesting things. 

(Witch sits down on large dice at right stage. Much noise and 

laughter off stage. Mr. Decimal Point goes to rear and beckons. 

Noise ceases, music.* ) 

(Enter all other characters, also sufficient number of pupils 

to make stage well filled.) 

Mr. Decimal Point: Now, Simple Interest, will you sing a math- 

ematical song to our honored hostess of the underworld ? 

2Smith, Seymour. Dorothy—Old English Dance. Century Music Co. 
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Simple Interest: With great pleasure, Mr. Decimal Point. 

(Steps to front stage and sings the Number Song.*) 

Mr. Decimal Point: That’s fine; thank you very much, Simple 

Interest. I didn’t know that you could sing so well. 

Cutey Angle (Skips forward in a rollicking fashion): Bet 

yer I know some mathematical sums that you can’t answer. 

What’s a tall coffee pot in use called? (All shake heads.) Give 

it up? Hypotenuse.‘ 

If you should lose your parrot what would you say? (All 

Shake heads.) Give it up? (With a giggle) Poly-gone.* 

What’s an article for serving picnic ice cream ? * 

The Cones (coming forward eating their ice cream): Cones. 

Cutey Angle: I must go out now to see the race. 

Witch: What race? 

Cutey Angle: Human race 

“* 

Mr. Decimal Point (to cones) : What do you know about cones? 

First Cone: A cone is formed by rotating a right triangle 

about one of its sides. 

Second Cone (to First Cone): How many cubic inches of 

ice cream does your cone hold. (Borrows white measuring 

stick from Mr. L. W. H.) It is 4 inches high and has a radius 

of one inch, so it holds 1/3 of 3 1/7 times the square of one times 

4 eubie inches or 4 1/5 cubic inches. 

First Cone: For the land’s sake, lucky you multiplied by 3 1/7 

to make the answer larger. I don’t feel as if I had eaten even 

4 1/5 eubie inches of strawberry ice cream. Why not multiply 

by 19 7/8 or something to make us feel as if we had really had 

a good feed. 

Mr. Decimal Point (in disgusted manner to Cutey Angle who 

has procured the Witch’s broom .and is sweeping the floor) : 

What in the world are you trying to do with that broom, Cutey 

Angle? 

Cutey Angle: I’m sweeping up the jokes that didn’t get over 

the footlights. 

Plane Geometry (anxiously coming to front stage holding up 

a white hoop): I can tell you about that 31/7. See my hoop. 

don’t worry, you don’t belong to 

3 MATHEMATICS TEACHER, Vol. XVIII, October, 1925, page 353. 

4 MATHEMATICS TEACHER, Vol. XVIII, October, 1925, page 356. 

5 From Criss Cross as played by Fred Stone, New York City, 1927. 
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I have broken it so I tied it up with a string. This black string 

is the diameter and it is 17 inches long. When I multiply the 

length of the diameter by 3 1/7 I obtain 53 3/7 inches, which 

is the distance around my hoop. The Greeks used their letter 

Pi (points to the ‘‘II’’ on his ecard) to represent 3 1/7. Pi is 

the Greek letter P, and stood for ‘‘periphery’’ which means 

**cireumference.’’ Many values have been used for Pi, ranging 

from 3 to the value out to 707 decimal places. At present every 

school boy knows it as 3.1416 or about 3 1/7. 

First Cone: I may be dumb, but I don’t see yet what the 

3.1/7 and the length of the circumference has to do with my 

ice cream. I don’t eat the cone or the rim around the top. 

I eat what’s inside. 

Plane Geometry: Well, let me have the floor once more, and 

I’ll explain again. Before you ean find the volume of your 

ice cream . 

Cutey Angle (breaking in from the right side): It will all be 

melted. 

Plane Geometry: Before you ean find the volume of your 

strawberry ice cream you have to find the area of its base which 

would be a cirele. 
? 

Cutey Angle (with a giggle) : Ice cream with a ‘‘ base,’’ straw- y g \ gigg ’ 
‘ berries with a ‘‘sporano’’—Ha, ha, ha. 

Mr. Decimal Point: Silence please; no more nonsense from 

you, Cutey Angle. Continue now, Plane Geometry, please. 

Plane Geometry (steps to large blackboard at right): Here’s 

your cirele with radius called ‘‘r.’” How many squares are 

there? 

Whole Class (witch looking on): Four squares. 

Plane Geometry: What is the area of one square? 

Whole Class: r square. 

Plane Geometry: What is the area of all four squares together? 

Whole Class: Four r square (4r’). 
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Plane Geometry: Do you think the area of the circle is more 

than the area of the four squares? 

Whole Class: No, the circle area is a little less than the area 

of the four squares. 

Plane Geometry: Well, it is 3 1/7r? and not quite 4r*. So 

the area of every circle is found by squaring the radius and then 

multiplying by 31/7. Now First Cone do you understand that 

brother second cone was right when he told you to square one 

and then multiply by 3 1/7. Then the cream is 4 inches deep 

so you have to take that into account, and your cone (borrows 

the cone from Second Cone) is pointed and holds just 1/3 as 

much as a cylinder, provided they have the same sized bases and 

equal heights. Let me show you. (Motions to two pupils who 

bring out small table from behind left blackboard and place it at 

front stage.) See this cylinder. Its base has the same area as the 

base of this cone. (Compares the two bases carefully.) The 

cylinder is empty, but each of these three cones is filled with 

sand. Watchme. (Empties sand from three cones into cylinder 

slowly so all can see. Witch appears to be quite overcome.) It 

takes three cones full to fill the cylinder, therefore one cone 

holds just 1/3 as much as the cylinder provided the dimensions 

are the same. 

The formula for the volume of a cone is V 1/3 bh. 

Isosceles Triangle (who has been measuring the angles which 

the tripod made with the floor by using the large protractor) : 

Just see, folks, what I’ve found. These sticks form an isosceles 

triangle with the floor of the cave as a base. Each base angle 

measures 55 degrees, and since there are 180 degrees in every 

triangle, there must be 70 degrees in the angle up here. (Meas- 

ures the vertex angle above the kettle.) Yes, there are 70 de- 

grees in the vertex angle. 

Mr. L:W.H.: Pardon me, Witch, but are you aware that the 

white box upon which you are sitting is a cube. What use do 

you make of the dots on it? 

Witch: I toss these dice and count the black spots on them. 

They tell me how many evil deeds I must do each night. 

Mr. L.W.H.: O Witch, don’t be so cruel, let me explain what 

wonderful mathematical forms your dice are. The length, width, 

and height are all equal. (Measures carefully with white meas- 

uring stick.) It is just 18 inches on an edge, so its volume 

will be 18x18x18 cubic inches or 5,832 cubic inches. 
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Mr. Decimal Point: Is our poetess, Miss Numerator Denom- 

inator, present? 

Miss Numerator Denominator: Yes, Mr. Decimal Point. 

Mr. Decimal Point: Will you recite one of your latest poems 

for us—the one you composed while you were on your vacation 

at Mount Quadratic last summer with your friend Miss Ele- 

mentary Algebra. 

Miss Numerator Denominator: With great pleasure Mr. Deci- 

mal Point. (Comes to front stage and recites poem entitled 

First Aid in Algebraic Fractions.* 

Mr. Decimal Point: We could tell you many more interesting 

facts, old Witch, but now that you have learned that it is 500 

leagues from the City of Ignorance to the City of Inaccuracy, 

I hope your boss, old King “olus, will not seold you for spend- 

ing a little of your time with us. We must all return to the 

upper world now and go back to our duties at our beloved 

----School. In parting, we'll sing youa song. (Entire group 

forms acute angle on stage with vertex at rear and sings the 

Number Song.’ (Pupils point to the cards of the following 

as they are mentioned in the song: ‘‘numbers great,’’ ‘‘numbers 

small,’’ ‘‘ vast infinity,’’ ‘‘zero.”’ 

Exit All 

© MATHEMATICS TEACHER, Vol. XIX, February, 1926, page 101. 

7 MATHEMATICS TEACHER, Vol. XVIII, October, 1925, page 353. 



SOME PEDAGOGICAL ASPECTS OF GEOMETRY 

TEACHING 

By MABEL SYKES 

Bowen High School, Chicago, Illinois 

Oftentimes things are said that are so fundamentally true that 

they never grow old. 

Many years ago, Dr. J. M. Coulter, the botanist, read a paper 

on the ‘‘Mission of Seience in Education.’’ Something that 

he said in this paper has a direct application to much of our 

geometry teaching today. He contrasted two types of instruec- 

tion in the following words: ‘‘In the one ease, the facts are 

presented in the helter-skelter fashion, solid and substantial 

enough, but a regular mob, with no logical arrangement, no 

evolution of a controlling idea. Details are endless, no em- 

phasis brings out certain things into prominence and subordinates 

others, and the whole subject is as featureless as a plain, where 

the dead level of monotony kills off every one but the drudge. 

. . . In the other case fewer facts are presented, but they are the 

important ones, and marshalled in orderly array, battalion by 

battalion. They move as a great whole towards some definite 

object. . . . Instead of a level plain, there are mountain peaks 

and valleys. There is a perspective: there are vistas from 

every point of view.”’ 

Just at this point it is of the utmost importance that there 

be no misunderstanding. The subject matter in geometry texts 

is divided into chapters or books, and the theorems are so ar- 

ranged that each proof depends logically upon what precedes. 

This is true and always has been true of all geometry texts; 

it is fundamental and essential to all geometry teaching. A 

more complete classification than this is suggested by the above 

quotation. Consider almost any chapter in almost any geometry 

text with the following questions in mind: Is there a controlling 

idea in this chapter? Should there be such a controlling 

idea? Are there several such ideas? If so what are they? 

Has each controlling idea its fundamental theorems or definitions, 

and are the other theorems and exercises grouped about these 
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fundamental facts and made subordinate to them? In other 

words does the careful classification of material extend beyond 

the mere division into chapters, down to the last detail? Is 

this organization so clear and evident that the pupil is conscious 

of it? If the material in our geometry texts is not organized in 

this way, should it be and ean it be so organized? To what ex- 

tent do we use such organization in our work? 

Some years ago, Dr. E. R. Hedrick at that time in the Uni- 

versity of Missouri, said in a geometry report ‘‘It is a funda- 

mental characteristic of the human mind that any lasting im- 

pression of a vast field requires distinctions in emphasis.’’ In 

his syllabus of geometry theorems in the same report, theorems 

were printed in different kinds and sizes of type according to 

what seemed to him their relative importance. The most im- 

portant theorems were printed in black type, the least important 

in very small type, with the others arranged in between. 

If one may judge from the textbooks that have appeared since 

this report, this feature of the report made little or no im- 

pression. Here again a misunderstanding would be fatal. 

Surely, Dr. Hedrick never intended that different sizes and 

styles of type be used in printing theorems in geometry texts. 

It spoils completely the appearance of the book and accomplished 

nothing. What Dr. Hedrick suggested in regard to geometry 

teaching is exactly what Dr. Coulter said about all science 

teaching. 

This brings us back to the arrangement of the subject matter 

within the chapters and to the necessity of stressing fundamental 

theorems and definitions by frequent use. Such an arrange- 

ment of material by careful classification is in accord with the 

best psychology and pedagogy as is suggested by the quotation 

from Dr. Hedrick given above. Dr. C. H. Judd, in his ‘‘Psy- 

chology of High School Subjects,’’ page 62, says that ‘‘the only 

way to teach a student to solve originals is to teach him to analyze 

a new problem.’’ Surely teaching pupils to solve originals is 

one of the skills that every geometry teacher hopes her class 

may acquire. No teacher to-day is satisfied with the ‘‘in- 

ferior training’’ that many of the class get by merely following 

the text, or by listening to the solution of exercises presented 

by the favored few who can rely upon inspiration. 

Of course the element of inspiration can never be completely 
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eliminated from the study of original proofs: nor is it desirable 

that it should be. Most pupils, however, need something besides 

inspiration in working on originals. This something is supplied 

by careful training in analysis. If the work has been so pre- 

sented that certain theorems, definitions, and methods stand 

out in the mind of the student as fundamental, he can classify 

at sight any exercise that is within reason. He has then the 

first step in the analysis of the proof for which he is searching. 

To make an analysis, one must ask one’s self a series of ques- 

tions. One should start with what is to be proved, and by means 

of these questions unravel the proof step by step. If the geom- 

etry work is divided into a series of units, each clear cut and 

complete in itself, if each unit has its fundamental theorems 

or definitions with the rest of the work grouped about them, 

then all the pupils who deserve their credit in geometry can be 

expected to do easy originals. 

The attention of the teaching force has recently been called 

to topic teaching, by Dr. H. C. Morrison of the University of 

Chicago. There are two principal objectives in geometry teach- 

ing: (1) to give the pupil an understanding of certain space 

relations and (2) to train him to make use of the facts presented. 

Both objectives can be attained most readily by organizing the 

work into units. However, each unit should not only be com- 

plete in itself, but should be small enough for beginners to grasp 

as a whole. This is not accomplished by making the unit so 

comprehensive that it includes an entire chapter or book, or 

by including at random the next five, ten, or fifteen theorems. 

Moreover, if a small unit is used, a concise preview can be given 

the class before the detailed study of the unit is begun. This 

preview affords the teacher an opportunity to give the class an 

understanding of the space relations involved in the unit. The 

training in problem solving should come in the more detailed 

and intensive study. 
In what is usually called Book I, the most important idea is, 

of course, the use of congruent triangles. Probably very many, 

if not most, geometry pupils, do get this idea and get it so truly 

and thoroughly, that when they wish to prove segments or angles 

equal, they naturally look first for a pair of congruent triangles. 

But teachers should consider seriously whether this is because 

of the organization of the work or in spite of it. It might be 
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noted that in presenting the subject of congruent triangles, it 

is not necessary to include in the unit all of the tests for such 

triangles. The first three tests are all that are really necessary 

to develop in the class skill in the use of such triangles. The 

other theorems can be introduced later where they seem to fit 

in best. 

Besides congruent triangles, Book I usually includes the fol- 

lowing topics: 

I. Parallels and angles, 

II. The sum of the angles of a triangle or polygon, 

III. Parallelograms ’ 

IV. Inequalities. 1 

Opinions may differ as to what are the fundamental definitions 

or theorems in any particular topic. In fact, what these are, is 

not nearly so important as that there be such fundamental theo- 

rems or definitions, and that the rest of the material included 

in the topie be subordinated to what is fundamental. 

In the case of parallelograms there can be little question. The 

definition is the fundamental thing. The work included can 

and should be arranged under the following heads: (1) prop- 

erties of parallelograms, (2) congruence of parallelograms, and 

(3) tests for parallelograms. The entire subject should be so 

organized and taught that the pupil naturally makes proper use 

of the definition of parallelograms. In fact the only theorem 

that does not naturally depend directly upon this definition is 

The diagonals of a parallelogram bisect each other. After the 

essential theorems included in the unit have been studied, the 

class must be trained in the application of the tests for parallelo- 

grams by the use of numerous exercises. If the work is arranged 

in this way, pupils will not only have a clear and lasting impres- 

sion of the important facts about parallelograms, but will be 

able to attack or analyze reasonably hard exercises involving 

parallelograms. The importance of the definitions as funda- 

mental can and should be emphasized in discussing the prop- 

erties of special parallelograms and of related quadrilaterals, 

such as the isosceles trapezoid and the like. 

In presenting the subject of parallels and angles, three groups 

of theorems should be included: (1) tests for parallels, (2) 

angles made by parallels and transversals, (3) supplementary 
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theorems. In this study the definition of parallel lines and the 

assumption, Through a given point, one parallel and only one, 

can be drawn to a given line, are, of course, fundamental. In 

building upon these basie facts, there is room for considerable 

difference of opinion as to the arrangement of material. If the 

theorem: If two straight lines in the same plane are cut by a third 

straight line sa that the alternate interior angles are equal, the 

Lines are parallel, and its converse be taken as the fundamental 

theorems for the first two groups, two desirable results may be 

secured: (1) the other theorems included in the unit are easily 

grouped about these two, and (2) the pupil has at his command 

a test for parallels which can be applied in the majority of early 

exercises in which it is necessary to prove two lines parallel. 

The use of the two theorems involving perpendiculars and paral- 

lels, Two lines perpendicular to the same line are parallel, and 

A line perpendicular to one of two parallels is perpendicular to 

the other, may be made the subject of a special lesson or two 

by the proper choice of exercises. 

When one considers that the training of pupils in problem 

solving, is one of the main objectives in geometry teaching, it 

is a little difficult to see why the sum of the angles of a polygon 

should not follow immediately the theorem concerning the sum 

of the angles of a triangle. Yet it is rarely so placed in text- 

books. 

In studying circles, three sub-topies stand out in one’s mind 

as of first importance, namely: (1) cireles and chords, (2) circles 

and tangents, (3) circles and angles. These three topics are 

eapable of definite, clear cut unit treatment. The pupil is en- 

titled to a working knowledge of two important facts in this 

connection: (1) that in dealing with chords, one thinks first of 

the diameter perpendicular to the chord, and (2) that in dealing 

with tangents, one thinks first of the diameter drawn to the point 

of contact. This working knowledge is only obtained by stress- 

ing the corresponding theorems by proper arrangement of other 

theorems and exercises. In studying the measurement of angles, 

a very interesting unit may be worked up, making everything 

subordinate to the theorems concerning the measure of an in- 

scribed angle and the measure of an angle formed by a tangent 

and a chord. 

‘Work on loci is a separate topic and should be so treated. 
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The topies that are generally treated with the least regard 

to the laws of pedagogy, are those involving proportion and 

similarity. One proof of this fact is the difficulty that a solid 

geometry class usually has with the theorem concerning a plane 

parallel to the base of a pyramid. If the pupil has studied sim- 

ilar figures in plane geometry so that the fundamental facts 

and methods have made a lasting impression, he can analyze and 

prove this theorem with very little assistance. But to do this, 

he must know that to prove two polygons similar, he must prove 

their angles equal and their corresponding sides proportional, and 

that to prove two ratios equal, he has certain well defined meth- 

ods. In this ease, he has to prove each ratio equal to a third 

ratio by means of similar triangles. Does the pupil know these 

facts? He certainly will not be conscious of the methods of 

proving ratios equal, unless his attention has been ealled to them, 

and he has had drill in their application. This drill ineludes 

the use of the theorems concerning ratios of segments made by 

parallels and transversals and the use of the first test for similar 

triangles. He must also be taught to recognize the ease in which 

it is necessary to prove two ratios equal to a third. 

The properties of similar figures are listed by the Society for 

the Promotion of Engineering Edueation, in their ‘‘Syllabus 

of Mathematies’’ as among the ‘‘ facts that a student should have 

so firmly fixed in his memory that he will never think of looking 

them up in a book.’’ It is difficult to see, however, how he is 

going to learn the properties of similar figures if they are seat- 

tered about over two chapters in his text book, and if his at- 

tention is never called to them by any summary, written or oral. 

This topie concerning the properties of similar figures makes a 
good unit for presentation if it is postponed until after areas 

are studied. Then the theorem concerning the ratio of the 

areas of two similar figures can be included as indeed it should 

be. The entire group of theorems can then be stressed by the 

use of numerical exercises. 

The topic involving the theorems concerning the areas of plane 
figures is in general well organized, and a large number of 

numerical exercises are generally available. Whether or not it 

is desirable to train pupils to recognize polygons that can be 

proved equivalent, is a matter worth considering. If it is de- 

sirable to include this topic a very careful organization of ma- 
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terial is necessary, for very little consideration beyond a few 

scattered exercises is given to the matter in most texts. 

The list of topics here mentioned does not claim to be ex- 

haustive; it is suggestive merely. Many recent texts call atten- 

tion to the plan of proof before giving the proof in detail. This 

adds greatly to the intelligent reading of text proofs. Many 

recent texts also give more or less attention to analysis as a 

method of attacking originals. But no adequate training in 

analysis can be given without a careful organization of material 

into units with proper placing of emphasis. The quotations from 

Dr. Coulter and Dr. Hedrick given at the beginning of this ar- 

ticle, may seem like ancient history, but good pedagogy is never 

out of date and the whole matter has been revived very recently 

by Dr. Morrison’s insistance on topic teaching, and still more 

recently by a statement in the article by Miss Gertrude E. Allen, 

in the Second Year Book of the National Council of Teachers 

of Mathematics. On page 260 in discussing the Outline of the 

Course in Geometry, she says, ‘‘ Regardless of the text, it is es- 

sential that the teacher emphasize the relatwe importance of the 

significant theorems, group related theorems, and generalize 

closely related groups in one theorem when practical. 



NEW BOOKS 

An Introduction to Mathematical Analysis. By FranK LOXLEY 

GriFFIN. Houghton Mifflin Co., N. Y. City, 1921. 

Freshman Mathematics. By Grorce WALKER MuLLINs, and 

Davip EuGENE SmitH. Ginn and Co., N. Y. City, 1927. 

What mathematics should follow the courses given in the or- 

dinary high school? Present opinion is erystallizing on four 

points: (1) There seems to be an agreement that the subse- 

quent work in mathematies should touch life at more points than 

has hitherto been the case with our formal courses in trigonom- 

etry, college algebra, and analytics; and that they should pro- 

vide problems that inculeate an appreciation of the power and 

place of mathematies in building up the civilization of which 

we are the beneficiaries. (2) As to the manner of presentation, 

there is a growing conviction that the element of discovery must 

be given a larger place, even at the expense of a less rigorous 

and systematic exposition in the initial stages. The good teacher 

has always been guided by this principle, but it is only recently 

that textbook writers have made this one of their cardinal prac- 

tices. 

(3) As to arrangement of material the so-called spiral method, 

sometimes much abused, but more often successful has come to 

the fore in secondary school mathematics and is fast gaining 

favor in college courses. Whether given in unified courses or 

as separate subjects it is realized that the more difficult features 

of certain topics cannot be mastered until a broader basis has 

been laid. (4) Another tendency, closely related to the spiral 

arrangement and practically an extension of it, relates to the 

organization of the curriculum of college mathematics. In see- 

ondary school mathematics it has been observed that more in- 

terest and better results follow by omitting the more abstruse 

topies of algebra and geometry and inserting the simpler ele- 

ments of numerical trigonometry, determinants, the graphical 

solution of equations, ete.,—subjects hitherto thought of as col- 

lege- disciplines. The new curriculum harmonizes better with 

the student’s capacity, adapts itself better to his experience, 
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and forms a better basis for courses in industry and science 

which he may take up afterwards. Many educators feel that 

the same obtains for college mathematies; and some teachers 

and textbook writers have acted on this conviction. This pro- 

gressive curriculum has found expression in so-called general or 

survey courses for freshmen. These courses inelude, besides 

trigonometry and algebra and analyties, the elementary concepts 

of the caleulus. In the execution of this plan, however, there 

develops a somewhat sharp division: one wing, hitherto the more 

aggressive, advocates that this general course be built up as 

unified mathematies; the other desires the different fields in the 

main to be kept apart, though closely correlated. 

Consonant with these progressive principles a number of new 

texts have been published in the last decade. But your re- 

viewer knows of no other book that has so successfully met all 

these desiderata as the two listed above. 

Griffin’s Introduction to Mathematical Analysis is a most skill- 

fully graded and carefully unified course in college algebra, trig- 

onometry, analytics, and the simpler processes of the differential 

and integral calculus. The book is a veritable thesaurus of in- 

teresting problems, so that even a person who teaches from con- 

ventional texts will do well to have Griffin on his desk for prob- 

lem material. This text is well-nigh unique in that the student 

learns nearly all the routine and technique by solving actual 

problems from physics, mechanics, statistics, finance, and engi- 

neering. The book was not put on the market hurriedly: there 

were too many derelicts on the mathematical shores for Griffin, 
a believer in unified texts, to wish to add one more failure. 

So for nine years he tried out the material with his freshman 

classes in Reed College, eliminating problems and methods that 

proved unsatisfactory. 

This work covers 512 pages, under 15 chapter headings. Chap- 

ter I, entitled ‘‘Functions and Graphs,’’ is a classic. The re- 

viewer has never seen a finer bit of pedagogy in any language 

than this exposition of the graph and its uses. In learning 

to plot, much of the student’s time is necessarily consumed with 

mechanical routine. What a pity, then, that all the reward most 

books on algebra and analytics can offer a student for his labor 

is a mild study of functionality and its application to interpola- 

tion, while the interesting topics of rates and summations are 

deferred to a later course! Through a list of ‘‘fundamental 
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problems of variation,’’ Griffin introduces the student graph- 

ically to the concepts of differentiation and integration as well 

as interpolation. This chapter is really an epitome of the whole 

book. 

Chapters IT, III, IV take up analytically the concept of limit 

and the processes of differentiation and integration of polynom- 

ials. It is the expert teacher who has written these chapters; 

and the reviewer can testify from actual experience with the 

text that students who have been introduced to the limit concept 

through these chapters, though they may fumble on technique in 

their sophomore calculus, they really know what a derivative is 

and what constitutes an integration. Formal trigonometry and 

logarithms are taken up in Chapters V and VI. This is the least 
‘ satisfactory part of the ‘‘Analysis.’’ The smooth progress of 

the first chapters seems interrupted. The insertion of the trig- 

onometrie functions at this place appears a little forced. One 

wonders whether formal trigonometry, any more than demon- 

strative geometry, incorporates easily into a unified course. 

Chapter VII, on Logarithms and Exponential Functions, is an- 

other gem. One will have to search far before one finds a more 

pedagogic development of the natural logarithm system and a 

more ‘‘natural’’ account of the ‘‘natural base’’ e. Griffin’s use 

of the logarithmic and semi-logarithmie graphs to discover scien- 

tific laws, while unusual in freshman texts, is worthy of imitation 

by textbook writers, considering that the processes are not in- 

volved and the applications possible in daily life are quite nu- 

merous. 
The chapters on coordernates, trigonometric analysis, solution 

of equations, complex numbers, and the definite integrals are 

taken up more in the conventional way. We feel that some 
of these chapters are too crowded. It would have added to the 

value of the ‘‘ Analysis’’ to have had less work in differentiating 

trigonometric, logarithmic and exponential functions and less 

complicated work in the definite integral; especially so as more 

time should have been given to the conic sections. 

Two other chapters deserve special mention. Chapter XIIT 

teaches Progressions and Series by showing their use in the 

Theory of Investment and the discovery of scientifie laws. 

Chapter XIV, on Permutations, Combinations, and Probability, 

gives the rudiments of Statistical Method in a way that should 

be of help to the student in his later work or reading; this 
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work should prove especially valuable to the student who takes 

no more formal mathematies. 

Freshman Mathematics, by Mullins and Smith, is not a unified 

course in the strict sense of the word; for the different fields of 

mathematics, though closely correlated, are in the main treated 

separately. The list of chapter headings gives an idea of the 

book: I. Elementary Algebra Applied. II. The Binomial Theo- 

rem and Series. III. Logarithms. IV. Trigonometry. V. An- 

alytic Geometry. VI. The Calculus. VII. Numerical Equa- 

tions. VIII. Practical Measurements. In this work the authors 

aim to present the basis for a one-year course that will ‘‘open 

the door of college mathematics to all by showing the meaning 

and the purpose of the science and its general usefulness in 

the various fields of intellectual activity.’’ 

This text is admirably adapted for classes having had only 

two semesters of algebra. Classes that have had three semesters 

should study the first three chapters eclectically. But even 

where the subject matter may be elementary, the entire treat- 

ment both as to its theoretical aspect and as to its practical 

application has in mind the interests and point of view of the 

college student. To quote from the preface: ‘‘Instead of be- 

ginning with the conventional formal review of algebra, the 

plan has been adopted of setting forth clearly the types of 

work in which the student is likely to need algebra in his subse- 

quent study, and following this with a review that is limited 

strictly to the essentials of the subject. By being based upon 

the principle of subsequent usefulness, this review can be placed 

upon a somewhat higher plane than is possible with the conven- 

tional type.”’ 

Of special merit is the chapter on trigonometry. Trigonom- 

etry should appeal to our common sense and everyday experience 

more than most pre-calculus studies; but our texts generally 

clutter up the main principles and processes with digressions 

and a welter of phrases. The contrast in Mullins’ and Smith’s 

text is refreshing. The exposition is simple and attractive and 

the subject matter foundational. The plan of the book permits 

the authors to take up logarithms as a coordinate topie between 

the chapters on algebra and on trigonometry and this partly 

assists in simplifying the discussion of formal trigonometry. 

Too often the student has to unlearn the idea that logarithms 

is a particular branch of trigonometry ; but in ‘‘ Freshman Math- 
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ematies’’ he sees the individual status of the subject of logarithms 

as well as its application to trigonometric processes. One could 

wish, however, a little fuller treatment of the section the authors 

choose to call Analytic Trigonometry. 

In line with recent opinion the authors have inserted a chapter 

on the ealeulus. And they have ealled it ‘‘Caleulus.’’ The 

reader may remember Downey’s ‘‘ Higher Algebra,’’ extensively 

used in colleges twenty-five years ago. In this text was found 

considerable work in differentiation, in an algebraic setting. But 

the caleulus was there. Later the work in differentiation was 

omitted from our college algebras. It was an indefensible omis- 

sion, and one rejoices to see the derivative again incorporated 

into our Freshman mathematics. Mullins and Smith confine 

themselves, and wisely so, to the calculus of the polynomial. 

The principal topies are rates and slopes, together with their 

applications to maxima and minima, and the integrations for 

areas and work. 

The classification and organization of the material in this 

book is a work of art. The goal of the authors is so clear, the 

progress towards it so undeviating, the style of presentation so 

smooth, that one seems to be reading a poem. One is seized by 

a strong desire to try out the book before the living forms in 

a class room. 

High schools planning to give advanced elective courses as 

recommended by the National Committee on Mathematical Re- 

quirements should examine these two books. Chapter I-IV (155 

pages) of Griffin are well suited for a semester’s course in ele- 

mentary calculus; the writer knows of at least one high school 

that gives such a course, based on Griffin. The first four chap- 

ters of Mullins and Smith (161 pages), would form a good, prac- 

tical course in logarithm and trigonometry for high school stu- 

dents. 

The authors of ‘‘An Introduction to Mathematical Analysis’’ 

and ‘‘Freshman Mathematics’’ have adopted what is best in the 

European curriculum of freshman grade and have ineorporated 

in their texts a judicious amount of proposed American reforms. 

They have thereby contributed a distinct service to the pedagogy 

of mathematics. 

MARTIN NooRDGAARD 
Sr. OLtar COLLEGE, 

NorTHFIELD, MINN. 



SOLID GEOMETRY VERSUS ADVANCED ALGEBRA 

By W. F. BABCOCK, 

Woodmere Academy, Woodmere, L. I. 

The heads of mathematics departments in several Eastern 

colleges were asked the following questions: 

In your opinion if circumstances make it impossible 

to offer both solid geometry and advanced algebra in a 

coeducational secondary school course, which of the two 

is of greater value: 

(A) To the student who intends to continue the study 

of mathematics in college? 

(B) To the student who will take as little mathe- 

matics as possible in college? 

(C) To the student who is not going to college? 

In other words in a coeducational school that prepares 

almost all of its students for college would you advise 

continuing to instruct solid geometry and trigonometry 

in the senior year or substitute advanced algebra with 

an elementary treatment of the beginning of the eal- 

culus and trigonometry ? 

Twenty replies were received as listed below: 

In answer to A, 10 voted for solid geometry, 
algebra and one either. 

In answer to B, 11 voted for solid geometry, 6 for 

algebra and three for either. 

In answer to C, 13 voted for solid geometry, 6 for 

algebra and one either. 

co for 

Extracts from the replies show as great a difference of opinion 

as in many other questions of pedagogy. There are two criti- 

cisms which seem fairly general: the first, that the college fresh- 

man is weak in elementary algebraic technique, and the second, 

that the introduction of the caleulus into all secondary schools 

is questionable. 
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SOLID GEOMETRY VS. ADVANCED ALGEBRA 

‘‘T think that the difference is mainly one of teaching 

synthetic reasoning as in Euclidean geometry instead 

of teaching analytic reasoning which is the basis of 

higher algebra. I doubt if a student younger than 18 

years ever understands analytic reasoning. I doubt 

the wisdom of beginning calculus then. We find that 

those who have had a little caleulus are no better off 

after a month than those who have had no calculus be- 

fore coming to college.’’ 

‘‘Tf a student is going to a higher institution where 

mathematics is fundamental, the aim of the school prep- 

aration should be in the direction of maximum thor- 

oughness in elementary work with a good deal of drill 

rather than the introduction of caleulus notions with 

the attendant risk that the student may commence the 

college work with overconfidence.’’ 

‘‘In regard to B and C, I would recommend taking 

neither.”’ 

‘**T certainly would not give even elements of calcu- 

lus in a preparatory school.’’ 

‘* Advanced Algebra is largely preparatory to further 

study in mathematics and while it has some cultural 

value (training in logical thinking) it is not nearly 

so cultural as solid geometry which gives splendid op- 

portunity to drive home the conception of a mathe- 

matical proof. The introduction of differentiation and 

integration of a polynomial into advanced algebra 

strengthens the course. Nevertheless, I believe solid 

geometry affords more educational opportunities.’’ 

‘*The caleulus would be better left until later.’’ 

**If your pupils have enough algebra to handle solid 

geometry and trigonometry, give them calculus. I re- 

gard advanced algebra as preparation for the realities 

of mathematics. I believe the study of algebra should 

be supplanted by applications to trigonometry and the 

calculus as soon as possible. The tendency in colleges 

now is to regard the calculus as the goal to be reached 

as soon as possible.”’ 

**We find the average freshman very deficient in the 

ability to do transformations and solvings of elementary 

479 
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algebra so that here we find a desire to see more em- 

phasis on the algebra. The usual high school course 

in trigonometry is, from our point of view, so deficient 

in analytical trigonometry that we find it necessary to 

repeat the subject for all who go on in sophomore an- 

alytics and calculus. Until the time comes when the 

‘analysis’ is more generally taught, I do not favor the 

beginning of calculus. Theoretically it is fine, but 

there is much against it.’’ 

‘*Whether the pupil goes to college or not, a thorough 

working knowledge of algebra and trigonometry is far 

more useful than solid geometry. You could make no 

worse mistake than to waste valuable time, which ought 

to be used in giving the pupil a thorough working 

knowledge of fundamental elementary things, by at- 

tempting to give him a superficial acquaintance with 

advanced subjects for the comprehension of which he 

has, in general, neither the maturity nor the back- 

ground.’’ 
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ANNOUNCEMENT 

Owing to a mistake in the recent advertising material sent out 

by the Mathematics Teacher some of our readers have the idea 

that we issue a September number. We are sorry that such 

a mistake was made, as no numbers ever appear in June, July, 

August or September. 

Again, we are sorry that the large increase in membership to 

the National Council this autumn has made it impossible for 

us to get the October and November numbers to some of our new 

subseribers. In all such eases we shall begin with the December 

number. 

Members of the Council will no doubt be interested in the mail- 

ing list by states which was used in sending out the November 

issue of the Mathematics Teacher. We hope to give a much 

longer list in a short time, but the following list will indicate 

to our present membership something of the nation-wide interest 

in the work which the Council is doing: 

CO ere 65 Maryland ........ 77) 6... ss. , 27 

Co  Peerererr 9 Massachusetts .... 235 Pennsylvania ..... 279 

Arkansas ........ 23 Michigan ........ 108 Rhode Island .... 17 

California ....... 145 Minnesota ....... 7 South Carolina ... 21 

Colorado ....... . 46 Mississippi .. .. 27 South Dakota .... 17 

Connecticut ...... CO Mipeer ......... GB Demmewee ....... 20 

PPOUNEED ons ccces ) boas «cen  , WN 65.04c cece 136 

ere 24 Nebraska ....... 2 rere 5 

ME. tence es 39 North Carolina ... 70 Vermont......... 14 

eee 12 Nerth Dekota .... 10 Vingimia ........- 38 

Pee ee 2 Washington ...... 25 

ae 125 New Hampshire .. 19 West Virginia ... 28 

ain kas Gw.c'ch as 89 New Jersey ...... 110 Wisconsin ....... 102 

eee 136 New Mexico ..... | eee 11 

Kentucky ........ 30 New York ....... 356 Philippine Islands. 12 

Louisiana ........ Se GE ce ccisa cae . 165 Foreign Countries. 96 

Bs caw eeesxes 25 Oklahoma ........ 49 

In our next report we hope to see a large increase in the num- 

bers from each state. All members who desire to assist us in 

our campaign for new members should write to the Mathematics 

Teacher, 525 W. 120th Street, New York City, New York, for 

advertising material, or send in subscriptions to that address. 



Teaching Arithmetic in the Intermediate Grades 
and 

Teaching Arithmetic in the Primary Grades 

BY ROBERT LEE MORTON 

Professor of Mathematics, College of Education 

Ohio University 

These books tell how to apply the principles of sound 

educational psychology to the teaching of arithmetic. 

What to teach, and how to teach it are fully treated. Used 

in mimeograph form for a year and a half, the material 

in these books has been tested and revised in the light of 

actual classroom experience. 

Write for descriptive circular. 
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